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ControLRM: Fast and Controllable 3D
Generation via Large Reconstruction Model
Hongbin Xu, Weitao Chen, Zhipeng Zhou, Feng Xiao, Baigui Sun, Liefeng Bo, Mike Zheng Shou,

Wenxiong Kang,

Abstract—Despite recent advancements in 3D generation methods, achieving controllability still remains a challenging issue. Current
approaches utilizing score-distillation sampling are hindered by laborious procedures that consume a significant amount of time.
Furthermore, the process of first generating 2D representations and then mapping them to 3D lacks internal alignment between the
two forms of representation. To address these challenges, we introduce ControLRM, an end-to-end feed-forward model designed for
rapid and controllable 3D generation using a large reconstruction model (LRM). ControLRM comprises a 2D condition generator, a
condition encoding transformer, and a triplane decoder transformer. Instead of training our model from scratch, we advocate for a joint
training framework. In the condition training branch, we lock the triplane decoder and reuses the deep and robust encoding layers
pretrained with millions of 3D data in LRM. In the image training branch, we unlock the triplane decoder to establish an implicit
alignment between the 2D and 3D representations. To ensure unbiased evaluation, we curate evaluation samples from three distinct
datasets (G-OBJ, GSO, ABO) rather than relying on cherry-picking manual generation. The comprehensive experiments conducted on
quantitative and qualitative comparisons of 3D controllability and generation quality demonstrate the strong generalization capacity of
our proposed approach. For access to our project page and code, please visit our project page.

Index Terms—Large Reconstruction Model, Controllable 3D Generation, Neural Radiance Fields.

✦

1 INTRODUCTION

1 THe potential of 3D content generation spans various sec-2

tors such as digital games, virtual reality/augmented3

reality (VR/AR), and filmmaking. Fundamental techniques4

in 3D content creation, such as text-to-3D and image-to-3D5

methods, offer substantial benefits by significantly reducing6

the need for laborious and costly manual work among7

professional 3D artists, thus enabling individuals without8

expertise to engage in the creation of 3D assets. Given the9

notable achievements in 2D content generation, exemplified10

by projects like DALL-E [1] and StableDiffusion [2], the11

community is increasingly focusing on advancements in 3D12

content generation. Recent progress in this field is credited13

to the advantageous characteristics of image diffusion mod-14

els [2], [3], differentiable 3D representations [4], [5], and15

large reconstruction models [6], [7].16

An appealing area of interest for 3D content creation is17

text-to-3D generation. Some groundbreaking advancements18

[8], [9] in text-to-3D synthesis have introduced methods to19

enhance a neural radiance field (NeRF) [4] through score20

distillation sampling (SDS) loss [8] for 3D asset generation.21

Building upon the influential work of DreamFusion [8],22

these SDS-based techniques aim to distill 3D information23

from pretrained large text-to-image generative models [1],24

[2]. Various strategies seek to elevate generation quality by25

expanding to multiple optimization phases [9], optimizing26

3D representation and diffusion prior simultaneously [10],27
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[11], and adjusting score distillation algorithms [12], [13]. 28

Another crucial aspect of generating 3D content is the 29

process of image-to-3D synthesis. The traditional approach 30

to this challenge relies on 3D reconstruction methods such 31

as Structure-from-Motion [15] and Multi-view Stereo [16], 32

[17], [18], [19]. These techniques involve identifying 3D 33

surface points by comparing similarities among point fea- 34

tures extracted from source images, enabling the creation 35

of highly precise surface and texture maps. Despite signif- 36

icant achievements in accurately reconstructing geometri- 37

cal details, these methods still struggle to reproduce de- 38

tailed view-dependent appearances. Consequently, recent 39

advancements have focused on developing implicit 3D rep- 40

resentations like neural radiance fields [4], [20] and neural 41

implicit surfaces [21], [22]. These novel approaches explore 42

volumetric representations that can be learned from dense 43

multi-view datasets without explicit feature matching, offer- 44

ing more efficient and high-quality solutions [20], [23], [24]. 45

Such efforts aim to move towards feed-forward models for 46

radiance fields reconstruction, relaxing the need for dense 47

views and per-scene optimization. Leveraging the capabil- 48

ities and generalization power of large generative models 49

like diffusion models, recent studies [25], [26], [27], [28], 50

[29] have integrated pre-trained generative models with 51

multi-view information to generate new views from sparse 52

inputs. Additionally, the emergence of Large Reconstruction 53

Models (LRM) [6], [30], [31] has emphasized learning inter- 54

nal perspective relationships through a triplane transformer 55

[32] and cross-attention mechanisms with 2D visual features 56

from single-view input images. Recent enhancements [7], 57

[33] of LRM have focused on replacing triplane-based vol- 58

ume rendering with 3D Gaussian splatting [20] and extend- 59

ing single-view inputs to sparse multi-view configurations, 60

https://toughstonex.github.io/controlrm.github.io/
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Fig. 1. Performance and efficiency comparison among different conditional 3D generation methods. Fig. (a) shows the average time consumption
on a single V100-32G GPU of different methods. Our ControLRM-T and ControLRM-D can respectively achieve 60 and 18 times faster inference
speed compared with the fastest baseline, MVControl [14]. Fig (b) shows the results of 15 evaluation metrics on the G-Objaverse test set, including
3D controllability metrics (introduced in Sec. 4.2.1) and controllable 3D generation metrics (introduced in Sec. 4.3.1).

facilitating comprehensive 3D object information.61

To address the question of whether the current prompt-62

based or image-based 3D generation methods are adequate63

to fulfill our requirements, we can delve further into the ne-64

cessities of 3D generation and categorize the issue into two65

distinct subproblems: (1) Is 3D Generation Controllable?66

In text-to-3D approaches, the prompt typically offers a basic67

description, requiring users to repeatedly input prompts68

to achieve the desired 3D output. Conversely, image-based69

methods necessitate acquiring the specific target image that70

meets the requirements before generating the desired 3D71

content. Therefore, integrating controllability into the 3D72

generation processes is crucial for ensuring user agency73

and customization. (2) Is 3D Generation Efficient? The74

optimization processes involved in text-to-3D and image-75

to-3D techniques are laborious and time-intensive, often76

demanding up to an hour to create a single 3D object77

based on input prompts or images. Such extensive compu-78

tational requirements pose a significant barrier, rendering79

the production of 3D content unfeasible for many users.80

Consequently, addressing efficiency within the realm of 3D81

generation stands as a critical challenge to overcome.82

To address the challenges identified, this paper aims83

to develop an efficient and controllable 3D generation84

method. An existing study named MVControl [14] endeav-85

ors to tackle this issue by extending ControlNet [34] to a86

multi-view diffusion model, MVDream [29]. The MVCon-87

trol system produces four multi-view images, which are88

then fed into a multi-view Gaussian reconstruction model,89

LGM [7], to derive coarse 3D Gaussian representations.90

Subsequently, these coarse Gaussians undergo SDS opti-91

mization guided by a 2D diffusion model to refine the92

3D Gaussian outputs. Despite demonstrating promising93

outcomes in 3D content generation, MVControl exhibits94

several limitations: (1) Misalignment between 2D and95

3D Representations: In MVControl, the multi-view images96

generated by the 2D diffusion model are converted to 3D97

representations using the LGM reconstruction model. How-98

ever, the direct integration of these distinct models may lead99

to discrepancies between 2D and 3D representations, as the100

reconstruction model might struggle to generalize across the101

generated images. (2) Complex Multi-Stage Procedures In- 102

crease Time Consumption: MVControl incorporates a two- 103

stage approach: the initial stage involves the amalgamation 104

of 2D diffusion and 3D reconstruction models, while the 105

subsequent stage encompasses the SDS-based optimization 106

process. These intricate multi-stage procedures contribute to 107

a cumbersome and time-intensive generation process. 108

These identified challenges prompt the following solu- 109

tions: (1) Resolving the misalignment between 2D and 3D 110

through an end-to-end aligned model; (2) Streamlining 111

complex procedures with a fast feed-forward model. This 112

paper introduces ControLRM, a feed-forward model de- 113

signed for controllable 3D generation founded on the Large 114

Reconstruction Model (LRM). The architecture consists of: 115

(1) A 2D condition generator with transformer or diffusion 116

backbone that accept text and 2D visual conditions as input; 117

(2) A 2D condition encoder that extract 2D latent features 118

from the output feature of the 2D condition generator; 119

(3) A triplane decoder transformer that interacts with the 120

2D features via cross-attention and generate a triplane- 121

NeRF representation. Training directly with conditional in- 122

puts and ground truth multi-view images from scratch is 123

computationally demanding and challenging. Therefore, we 124

propose a joint training framework leveraging the strong 125

priors of a pre-trained LRM model trained on extensive 126

datasets. In the condition training stage, the condition 2D 127

generator and the cross-attention layer are activated, while 128

the parameters in the triplane decoder remain fixed. In the 129

image training phase, both the image encoder and the tri- 130

plane decoder are activated to ensure the alignment between 131

2D latents and 3D triplane transformer. Rather than utilizing 132

the entire Objaverse [35] and MVImgNet [36] datasets like 133

LRM [6], we opt for a smaller dataset, G-Objaverse [37], 134

to train our ControLRM. To ensure unbiased evaluation, 135

we curate evaluation samples from three distinct datasets 136

(G-OBJ, GSO, ABO) rather relying on manual generation. 137

The quantitative and qualitative results on 3D controllability 138

evaluation and generation quality comparison demonstrate 139

the superiority of our method. 140

In summary, our main contributions are as follows: 141

• We present ControLRM, a novel framework tailored 142
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for controllable 3D generation based on single-view143

2D condition and text input. The model undergoes144

evaluation across four distinct condition types (edge,145

depth, normal, scribble), showcasing its robust gen-146

eralization and diverse controllability features.147

• We introduce an end-to-end feed-forward network148

architecture for controllable 3D generation. The end-149

to-end paradigm serves as a natural bridge be-150

tween 2D latents and 3D triplanes, while the feed-151

forward network design guarantees rapid inference152

when compared to existing optimization-based ap-153

proaches.154

• We present an effective joint training scheme for155

training the controllable 3D generation model. This156

approach leverages the significant 3D reconstruction157

capabilities within pretrained LRM to enhance our158

controllable 3D generation task.159

• Through comprehensive experiments conducted on160

G-OBJ, GSO, and ABO datasets, we demonstrate that161

our ControLRM significantly surpasses the perfor-162

mance of current state-of-the-art (SOTA) methods in163

3D controllability, generation quality, and inference164

speed (as shown in Fig. 1).165

2 RELATED WORK166

2.1 Optimization-based 3D Generation167

Building on the accomplishments of text-to-image diffusion168

models [2], [3], optimization-based approaches present a169

practical alternative by circumventing the necessity for ex-170

tensive text-3D datasets. DreamFusion [8] is a seminal work171

that introduced the SDS loss to optimize a neural field172

using diffusion priors for 3D asset generation. Addition-173

ally, Score Jacobian Chaining [38] is a study that elevates174

pretrained 2D diffusion models for 3D creation, utilizing175

the chain rule and the gradients learned from a diffusion176

model to backpropagate scores through the Jacobian of a177

differentiable renderer. However, these optimization-based178

techniques commonly encounter a shared challenge known179

as the Janus problem. MVDream [29] tackles this issue180

by refining a multi-view diffusion model, which replaces181

self-attention with multi-view attention in Unet to produce182

consistent multi-view images. Introducing the concept of183

3D Gaussian splatting [20], DreamGaussian [39] optimizes184

3D Gaussians using the SDS loss. Nonetheless, it grapples185

with the Janus problem stemming from the uncertainties186

of 2D SDS supervision and rapid convergence. Addressing187

this, GSGEN [40] and GaussianDreamer [41] incorporate188

a coarse 3D prior to generate more cohesive geometries.189

Furthermore, GSGEN proposes the use of the 3D SDS loss190

from Point-E [42] for joint optimization in the geometry191

phase. Despite SDS’s benefits in terms of data requirements,192

it necessitates optimization for each new 3D object and193

demands hours to reach convergence.194

2.2 Feed-forward 3D Generation195

The extensive 3D datasets [35], [36] have unlocked new196

possibilities for training feed-forward models to generate197

3D assets directly from text, single- or multi-view images.198

(1) 3D generation from single-view: LRM [6] first scales up199

the triplane transformer on a large dataset to predict a tri- 200

plane neural radiance field (NeRF) from single-view images, 201

showing high generalization ability. TripoSR [30] integrates 202

significant improvements in data processing, model design, 203

and training techniques, enhancing the efficiency and ef- 204

fectiveness. (2) 3D generation from multi-view: Methods 205

based on multi-view are extensions designed to enhance the 206

generation quality of single-view methods. Typically, multi- 207

view images of an object are initially synthesized from a sin- 208

gle image using a multi-view diffusion model [29]. Similar 209

to single-view approaches, these methods can be broadly 210

categorized as either diffusion-based or transformer-based 211

architectures. Examples of diffusion-based architectures in- 212

clude SyncDreamer [27] and Wonder3D [28]. SyncDreamer 213

necessitates dense views for 3D reconstruction, while Won- 214

der3D employs a multiview cross-domain attention mecha- 215

nism to process relatively sparse views. Transformer-based 216

architectures like Instant3D [43] encodes multi-view images 217

by a image encoder and concatenate the encoded results 218

into a set of tokens for the image-to-triplane decoder. Ad- 219

ditionally, LGM [7], GRM [44] and GS-LRM [33] enhance 220

the generation quality using high-resolution features and 221

increasing the number of surrounding views. (3) 3D gener- 222

ation from text: Point-E [42] and Shap-E [45] utilize complex 223

prompts to generate point clouds and neural radiance fields 224

respectively. Representing 3D data as volumes, 3DTopia 225

[46] and VolumeDiffusion [47] train diffusion models by 226

fitting volumetric modules. ATT3D [48] employs a feed- 227

forward transformer to generate the 3D contents and train 228

the model with amortized training via pretrained diffusion 229

model. Latte3D [49] extends the amortization architecture 230

of ATT3D, significantly improving the efficiency and gener- 231

ation quality. 232

2.3 Controllable 3D Generation 233

Despite the rapid advancements in 3D generation tech- 234

niques discussed earlier, achieving controllability in 3D gen- 235

eration remains a significant challenge. The current state- 236

of-the-art controllable 3D generation method is MVControl 237

[14]. This method incorporates a trainable control network 238

that interacts with the base multi-view diffusion model 239

to facilitate controllable multi-view image generation. In 240

the coarse stage, the MVControl model produces four-view 241

images, which are subsequently input into the 3D recon- 242

struction model LGM [7]. The generated coarse Gaussians 243

are then utilized to initialize the SDS-based training in the 244

refinement stage. However, there are still some limitations 245

in MVControl: (1) The direct integration of distinct models 246

may lead to discrepancies between 2D and 3D represen- 247

tations, as the reconstruction model may not generalize 248

well on the generated multi-view images. (2) The complex 249

procedures for generating a single 3D content may increase 250

the time consumption. In response to these limitations, we 251

propose ControLRM, an end-to-end feed-forward control- 252

lable 3D generation model which also has fast inference 253

speed. 254

3 METHOD 255

In this section, we present the ControLRM framework as de- 256

picted in Fig. 2. We commence by outlining the fundamen- 257
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Fig. 2. The overall framework of ControLRM, a feed-forward controllable 3D generation model.

tals of LRM in Sec. 3.1. Next, we delve into a comprehensive258

examination of the LRM framework from the perspective259

of the Variational Auto-encoder (VAE) in Sec. 3.2. Building260

on the insights from Sec. 3.2, we elucidate the process of261

enhancing the LRM to our proposed ControLRM in Sec.262

3.3. Subsequently, we elaborate on the components of each263

module within ControLRM and expound on the training264

objectives in Sec. 3.4.265

3.1 Preliminary of LRM266

Large Reconstruction Model (LRM) is an advanced method267

that efficiently generates a 3D object from a single 2D268

image input. The LRM primarily consists of the following269

components:270

Image Encoder: Given an RGB image as input, we utilize271

a pre-trained visual transformer (ViT) [50] to encode the272

image into patch-wise feature tokens denoted by {hi|hi ∈273

RDe}Np

i , where i represents the index of the image patch,274

Np is the total number of image patches, and De signifies275

the dimension of the feature tokens. Specifically, the pre-276

trained self-supervised model DINO (Caron et al., 2021)277

is used. The ViT incorporates a predefined [CLS] token278

hcls ∈ RDe , which is then concatenated with the feature279

sequence {hi}
Np

i=1 to form the output.280

Camera Features: The camera feature c ∈ R20 is comprised281

of the flattened vectors of camera extrinsic and intrinsic282

parameters. The 4-by-4 extrinsic matrix E is flattened to283

a 16-dimensional vector E1×16. The intrinsic parameters,284

including the camera focal length and principal points, are285

combined as a 4-dimensional vector: [focx, focy,ppx,ppy].286

To embed the camera feature, a multi-layer perceptron287

(MLP) is employed to transform the camera feature c into288

a 1024-dimensional camera embedding c̃.289

c̃ = MLPcam(c) = MLPcam([E1×16, focx, focy,pp
x
,pp

y
]) (1)

Modulation with Camera Features: The camera modulation290

incorporates an adaptive layer normalization (adaLN) [51]291

to adjust image features using denoising iterations and class292

designations. When provided with the camera feature c̃ as293

input, a multi-layer perceptron (MLP) predicts the scaling 294

factor γ and the shifting factor β: 295

γ, β = MLPmod(c̃) (2)

Subsequently, the modulation function will process the 296

sequence of vectors in the transformer {fj} as follows: 297

ModLN(fj) = LN(fj) · (1 + γ) + β (3)

where LN is the layer Normalization [52]. 298

Transformer Layers: Each transformer layer consists of a 299

cross-attention sub-layer, a self-attention sub-layer, and a 300

multi-layer perceptron sub-layer (MLP), where the input 301

tokens for each sub-layer are modulated by the camera 302

features. The feature sequence f in, serving as the input to the 303

transformer layers, can also be viewed as triplane hidden 304

features. As illustrated in Fig. 2 (b), the cross-attention 305

module uses the feature sequence fin as the query and the 306

image features {hcls, hi}
Np

i=1 as the key/value pairs. 307

f cross-i
j = Cross-I(ModLN(f in

j ); {hcls, hi}Np

i=1) + f in
j (4)

where Cross-I represents the cross-attention between the 308

image features and the triplane features. 309

Subsequent to the original transformer [53], the self- 310

attention sub-layer denoted as Self(·) and the multi-layer 311

perceptron sub-layer labeled as MLP(·) handle the input 312

feature sequence in the ensuing manner: 313

f self
j = Self(ModLN(f cross-i

j );ModLN(f cross-i
j′ )) + f cross-i

j (5)

314

fout
j = MLP(ModLN(f self

j )) + f self
j (6)

where fout
j represents the triplane feature output. This 315

final output undergoes upsampling via a trainable de- 316

convolution layer and is subsequently reshaped into the 317

final triplane representation TP ∈ R3×64×64×Dt , where Dt 318

signifies the dimension of the triplane. 319

Triplane NeRF: The triplane TP comprises three axis- 320

aligned feature planes: TPxy/TPyz/TPxz ∈ R64×64×Dt . 321

Given any 3D point p = [px, py, pz]
T within the NeRF object 322

bounding box [−1, 1]3, the point’s feature can be extracted 323

from the triplane TP using bilinear sampling. 324

TPp = Concat(TPxy[px, py],TPyz[py, pz],TPxz[px, pz]) (7)
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where Concat(·) represents the concatenation function, and325

TPp ∈ R3·Dt denotes the sampled feature corresponding to326

point p.327

Training Objectives: During training, V views are ran-328

domly selected from the dataset. One view is chosen as the329

reference view and passed to the LRM, while the other V −1330

views serve as auxiliary training views. Let the rendered331

views of the LRM be denoted as x̂, and the ground truth332

views as xGT. Particularly, for each input image x, we aim333

to minimize:334

Lrecon(x) =
1

V

V∑
v=0

(LMSE(x̂v, x
GT
v ) + λLLPIPS(x̂v, x

GT
v )) (8)

where LMSE represents the normalized pixelwise L2 loss,335

LLPIPS denotes the perceptual image similarity loss [54], and336

λ is a customizable weight used to balance these losses.337

3.2 Understanding LRM in a Perspective of VAE338

From the perspective of Variational Autoencoder (VAE) [55],339

the LRM can be viewed as an intricate architecture that340

encompasses certain fundamental principles akin to VAEs.341

Similar to the encoder in a VAE, the image encoder342

of LRM processes an input image, transforming it into a343

series of feature tokens. These tokens serve as the encoded344

latent representation of the input image, mirroring the latent345

space in a VAE. The decoding component of LRM functions346

analogously to the decoder in a VAE by reconstructing347

images from the latent space. Specifically, LRM maps the348

latent trilinear representation to a 3D object within NeRF349

and subsequently generates images with new perspectives,350

akin to the generation or decoding process within a VAE351

framework. LRM employs a reconstruction loss to reduce352

the dissimilarity between the input image and the rendered353

images altered based on camera parameters. In the subse-354

quent section, we will offer a theoretical overview of LRM,355

including a form of Evidence Lower Bound (ELBO).356

Given the 3D representation x3d, a set of projected357

2D images {xi}NV
i=1 with corresponding camera parameters358

{Ti}NV
i=1, where NV denotes the number of viewpoints. It359

is assumed that the ground-truth distribution of the 3D360

representation is represented by the density p(x3d). In LRM,361

this 3D representation is characterized by a triplane Neural362

Radiance Field (NeRF). Under this assumption, one can363

write:364

p(x3d) =

∫
z

p(x3d, z)dz =

∫
z

p(x3d|z)p(z)dz (9)

z represents the latent variable associated with x3d, fol-365

lowing a simple distribution p(z) referred to as the prior366

distribution. The primary objective of the VAE is to ac-367

quire a robust approximation of p(x3d|z) based on the368

provided data. This approximated distribution is denoted369

by pθ(x3d|z), where θ symbolizes the learnable parameters.370

Subsequently, we can compute the log likelihood log pθ(x3d)371

in the following manner: 372

log pθ(x3d)

= log

∫
T
pθ(x3d|T )p(T )dT ≥

∫
T
log pθ(x3d|T )p(T )dT

≈ 1

NV

NV∑
i=1

log pθ(x3d|Ti) =
1

NV

NV∑
i=1

log

∫
z
pθ(x3d, z|Ti)dz

=
1

NV

NV∑
i=1

log

∫
z

pθ(x3d, z|Ti)qφ(z|xi, Ti)

qφ(z|xi, Ti)
dz

≥ 1

NV

NV∑
i=1

Eqφ log
pθ(x3d, z|Ti)

qφ(z|xi, Ti)

(10)

where pθ(x3d|Ti) indicates that the 3D representation x3d is 373

conditioned on the camera parameters Ti corresponding to 374

viewpoint i. Given that our x3d embodies a triplane NeRF, 375

when conditioned on Ti, it serves as a representation of the 376

rendered image from viewpoint i. The final row in Eq. 10 377

denotes the Evidence Lower Bound (ELBO). By isolating the 378

inner term of ELBO at viewpoint i, we obtain: 379

Eqφ log
pθ(x3d, z|Ti)

qφ(z|xi, Ti)

=Eqφ log
pθ(x3d|z, Ti)pθ(z)

qφ(z|xi, Ti)

=Eqφ log pθ(x3d|z, Ti)− KL(qφ(z|xi, Ti)||pθ(z))

=Eqφ log

∫
T
pθ(x3d|z, Ti, T )p(T )dT − KL(qφ(z|xi, Ti)||pθ(z))]

≥Eqφ

∫
T
log pθ(x3d|z, Ti, T )p(T )dT − KL(qφ(z|xi, Ti)||pθ(z))

≈ 1

M

M∑
j=1

Eqφ log pθ(x3d|z, Ti, Tj)− KL(qφ(z|xi, Ti)||pθ(z))

(11)

Note that the extrinsic matrix of the input reference 380

view is normalized to an identity matrix, while the extrinsic 381

matrices of the other views are adjusted to the relative 382

transformation matrix with respect to the normalized refer- 383

ence view. The intrinsic parameters remain constant across 384

all views. Consequently, the input camera parameter Ti is 385

consistent and fixed within the LRM, thereby allowing for 386

its exclusion from the formulas: 387

Eqφ log
pθ(x3d, z|Ti)

qφ(z|xi, Ti)

≥ 1

M

M∑
j=1

Eqφ log pθ(x3d|z, Tj)− KL(qφ(z|xi)||pθ(z))
(12)

where pθ(x3d|z, Tj) represents the triplane decoder (de- 388

picted as purple modules in Fig. 2), while qϕ(z|xi) denotes 389

the image encoder (illustrated as orange modules in Fig. 2). 390

3.3 Upgrading LRM to ControLRM 391

Eq. 10, 11, and 12 elaborate on the extension of LRM, 392

interpreting it as a specialized variant of the Variational 393

Autoencoder (VAE). By analogy, these expressions can be 394

further expanded to cater to the objective of controllable 395

3D generation. Consider ei as indicative of the input 2D 396

visual condition on view i and the associated textual prompt 397

concerning the 3D object, the ELBO can be formulated as: 398

log pθ(x3d)

= log

∫
T
pθ(x3d|T )p(T )dT ≥

∫
T
log pθ(x3d|T )p(T )dT

≈ 1

NV

NV∑
i=1

log pθ(x3d|Ti) =
1

NV

NV∑
i=1

log

∫
z
pθ(x3d, z|Ti)dz

=
1

NV

NV∑
i=1

log

∫
z

pθ(x3d, z|Ti)qφ′(z|ei, Ti)

qφ′(z|ei, Ti)
dz

=
1

NV

NV∑
i=1

logEqφ′ [
pθ(x3d, z|Ti)

qφ′(z|ei, Ti)
] ≥ 1

NV

NV∑
i=1

Eqφ′ log
pθ(x3d, z|Ti)

qφ′(z|ei, Ti)

(13)
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By isolating the inner term of ELBO at viewpoint i, we399

can get:400

Eqφ′ (z|ei,Ti) log
pθ(x3d, z|Ti)

qφ′(z|ei, Ti)

=Eqφ′ (z|ci,Ti) log
pθ(x3d|z, Ti)pθ(z)

qφ′(z|ei, Ti)

≥ 1

M

M∑
j=1

Eqφ′ (z|ei,Ti) log pθ(x3d|z, Ti, Tj)− KL(qφ′(z|ei, Ti)||pθ(z))

(14)
Due to the normalization operation towards reference401

viewe in the extrinsic matrix, Ti is a fixed identity matrix,402

which can be further simplified in Eq. 14.403

Eqφ′ (z|ei,Ti) log
pθ(x3d, z|Ti)

qφ′(z|ei, Ti)

≥ 1

M

M∑
j=1

Eqφ′ (z|ei) log pθ(x3d|z, Tj)− KL(qφ′(z|ei)||pθ(z))

(15)
where pθ(x3d|z, Tj) represents the same triplane decoder404

as Eq. 12 (depicted as purple modules in Fig. 2), while405

qφ′(z|ei) denotes the condition encoder part (illustrated as406

red modules in Fig. 2).407

Eq. 15 represents the ELBO of our ControLRM. However,408

the optimization of Eq. 15 might be much more difficult409

than the optimization of Eq. 12 in LRM, given the relaxation410

of input from detailed images to coarse conditions (visual411

condition maps and text descriptions). Typically, achiev-412

ing convergence of ControLRM necessitates an even larger413

scale of data compared to what was utilized in training414

LRM (Objaverse [35] and MVImgNet [36]). Consequently,415

direct optimization of Eq. (15) is not the optimal solution,416

considering the computational cost and convergence issues417

encountered during training.418

To address this issue, we have to explore an alterna-419

tive training approach for our ControLRM model. Remark-420

ably, it is observed that the triplane decoder denoted by421

pθ(x3d|z, Tj) is common to both Eq. 12 and Eq. 15. This im-422

plies that leveraging the convergence of the triplane decoder423

pθ(x3d|z, Tj) and the image encoder qϕ(z|xi) under the424

guidance of Eq. (12) can enhance the training process in Eq.425

15. If pθ(x3d|z, Tj) is kept constant in Eq. 15, the focus shifts426

to maximizing the remaining term −KL(qφ′(z|ei)||pθ(z)),427

aligning the condition encoder qφ′(z|ei) with the latent428

space z. Consequently, the need for a vast amount of paired429

data (input condition and 3D object) can be significantly430

reduced, and the convergence can also be enhanced by431

leveraging the strong prior knowledge embedded in pre-432

trained LRM models.433

Following these discussions, we propose a joint train-434

ing paradigm which comprises two branches: the Image435

Training Branch and the Condition Training Branch. The436

former encompasses a 2D image encoder (qϕ(z|xi) in Eq.437

12) and a 3D triplane decoder (pθ(x3d|z, Tj) in Eq. 12). The438

latter comprises a 2D condition encoder (qφ′(z|ei) in Eq.439

15) and utilizes the same 3D triplane decoder (pθ(x3d|z, Tj)440

in Eq. 15. It is noteworthy that the cross-attention lay-441

ers interacting with qϕ(z|xi) and qφ′(z|ei) are denoted as442

Cross-I and Cross-C, respectively. Illustrated in Figure 2,443

the Image Training Branch optimizes the ELBO in Eq. 12,444

aiming to refine the triplane decoder pθ(x3d|z, Tj) and 2D445

image encoder qϕ(z|xi) for optimal performance. On the 446

other hand, the Condition Training Branch retains the fixed 447

parameters of the triplane decoder pθ(x3d|z, Tj) and focuses 448

on optimizing the ELBO in Eq. 15. This process naturally 449

aligns the distributions of the latent spaces in Eq. 12 and Eq. 450

15 using the shared 3D Triplane Transformer. 451

3.4 ControLRM 452

In this section, we delve into the specific modules of 453

ControLRM. The design of the conditional generator was 454

detailed in Fig. 2 in Section 3.4.1. Depending on the cho- 455

sen backbone for the conditional generator, ControLRM 456

manifests in two variants: 1) ControLRM-T featuring a 457

transformer-based conditional generator (Section 3.4.2); 2) 458

ControLRM-D integrating a diffusion-based conditional 459

generator (Section 3.4.3). Subsequently, we present the 460

condition-to-triplane transformer decoder in Section 3.4.6. 461

The training objectives encompassing adversarial loss, clip 462

loss, and rendering loss are expounded upon in Section 463

3.4.7. 464

3.4.1 Design of Conditional Generator 465

As depicted in Fig. 2, the conditional generator utilizes the 466

2D condition and the text embedding of CLIP [56] as input 467

to produce the 2D latents required for subsequent proce- 468

dures. A naive design of this generator is a transformer- 469

based backbone with cross-attention mechanism between 470

the feature sequence extracted from condition image and 471

the text feature. However, this design with only the cross- 472

attention mechanism fails to generate a regular results but 473

yielding meaningless results in the experiments. A similar 474

issue was observed in [57], indicating that the main reason 475

for this optimization failure stems from the notable disparity 476

between the 2D renderings and the ground truth images. As 477

noted by [58], the optimization gradient becomes unreliable 478

when the generated distribution and the target distribution 479

are disjoint. In contrast, the backward gradients to the 2D 480

latents in our model must traverse a series of modules, 481

including the condition encoder, triplane transformer, and 482

NeRF modules. This complexity of pathways may signif- 483

icantly impede the optimization process, consequently re- 484

sulting in unexpected failures. A straightforward remedy 485

proposed in [57] involves the incorporation of randomness 486

(e.g., Gaussian noise) into the network architecture. By in- 487

creasing the overlap between the rendered distribution and 488

the target distribution, the gradients during training become 489

more meaningful, promoting convergence. In summary, the 490

key considerations for designing the condition generator 491

in ControLRM are: 1) Incorporation of randomness for im- 492

proved training outcomes. 2) Emphasis on the efficiency of 493

the generator for fast inference speed. 494

3.4.2 Transformer-based Conditional Generator 495

For ControLRM-T model, we have devised a lightweight 496

transformer-based generator, illustrated in Figure 3 (a). 497

Building upon the preceding discussion, we introduce ran- 498

domness through a style injection module. Drawing inspi- 499

ration from the original style injection concept in StyleGAN 500

[59], where style features and random noise are integrated 501

into the generator via Adaptive Instance Normalization 502
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Fig. 3. The architecture of the 2D conditional generator in ControLRM.
(a) shows the transformer-based generator in ControLRM-T, and (b)
shows the diffusion-based generator in ControLRM-D.

(AdaIN), we adapt this approach by treating the text em-503

bedding as the style feature. This text embedding is concate-504

nated with random Gaussian noise and passed through a 3-505

layer MLP within our style injection module. The resulting506

feature vector is then combined with the output of each507

convolution layer to incorporate the text feature. In Figure508

3 (a), the convolution blocks and transformer blocks are509

stacked together, with residual connections applied to the510

convolution blocks in a U-Net configuration.511

3.4.3 Diffusion-based Conditional Generator512

For the ControLRM-D model, we have intricately inte-513

grated LoRA adapters [60] into the original latent diffusion514

model, incorporating small trainable weights. Leveraging515

the inherent randomness within the diffusion model, and516

aided by the pre-trained weights obtained from large-scale517

datasets, we aim to address the discrepancy issue high-518

lighted in Section 3.4.4. In addressing efficiency concerns,519

we opt for the fast one-step diffusion model [61] as the foun-520

dational framework. Specifically, we initialize the Diffusion-521

based generator with the pre-trained weights of SD-Turbo522

[62]. To form the 2D latents for subsequent procedures,523

we concatenate the outputs of the last three layers of the524

decoder depicted in Figure 3 (b).525

3.4.4 Condition Encoder526

In Figure 2 (a), the 2D latents are firstly interpolated to527

match the resolution of the input condition image, and528

then divided into the feature sequence {gi|gi ∈ RDe}Np

i .529

Similar to the feature sequence {hi}
Np

i extracted from the530

input image discussed in Sec. ??, De denotes the feature531

dimension, while Np corresponds to the number of patches.532

Within the condition encoder, the feature sequence {gi}
Np

i533

is passed through a sequence of transformer layers, each534

comprising a self-attention sub-layer and an MLP sub-layer.535

gself
i = Self(gi; gi) + gi (16)

536

gout
i = MLP(gself

i ) + gself
i (17)

where gout
i is the output feature. 537

To integrate the random sampling process, the output 538

gout
i of the final transformer layer is fed to another MLP to 539

regress the mean and variance results: 540

µgi , σgi = MLP(gout
i ) (18)

where µg is the mean feature and σg represents the 541

variance. Throughout training, the output feature sequence 542

{g̃i}
Np

i is is stochastically sampled from a Gaussian distri- 543

bution, where g̃i ∼ N (µgi , σ
2
gi). 544

3.4.5 Auxiliary Decoder 545

To boost the performance, we further introduce an auxiliary 546

decoder for the 2D latents to enhance the training process. 547

The generated 2D latents from the conditional generator 548

(refer to Sections 3.4.2 and 3.4.3) are passed through a 549

lightweight three-layer convolutional neural network. The 550

resulting image xaux is combined with the 2D renderings 551

to compute the loss function for the generated images. The 552

inclusion of the auxiliary decoder offers direct guidance to 553

the 2D generator, aiding in overall network convergence. 554

3.4.6 Triplane Transformer Decoder 555

The condition-to-triplane decoder receives the condition fea- 556

ture sequence {g̃i}
Np

i and the triplane feature sequence f in. 557

Analogous to the image-to-triplane decoder discussed in 558

Sec. 3.1, each transformer layer consists of a cross-attention 559

sub-layer, a self-attention sub-layer, and an MLP layer. The 560

input tokens for each sub-layer are influenced by the camera 561

features c̃. The operation of each transformer layer can be 562

described as follows: 563

f cross-c
j = Cross-C(ModLN(f in

j ); {g̃i}Np

i ) + f in
j (19)

564

f self
j = Self(ModLN(f cross-c

j );ModLN(f cross-c
j )) + f cross-c

j (20)

565

fout
j = MLP(ModLN(f self

j )) + f self
j (21)

3.4.7 Training Objectives 566

In Fig. 2, the training objectives consist of three components: 567

adversarial loss, CLIP loss, and rendering loss. For each 568

sample, we designate one reference view and randomly 569

select V − 1 side views. Denoting the rendered images of 570

ControLRM as x̂ and the ground truth images as xGT, the 571

index of the reference view is designated as 0. The resultant 572

image from the auxiliary decoder (refer to Sec. 3.4.5) is 573

denoted as xaux. The calculation of the loss can be expressed 574

as follows: 575

Adversarial Loss: To incentivize the alignment of the gener- 576

ated images with the corresponding ground truth domains, 577

we apply an adversarial loss [63]. In line with the approach 578

advocated by Vision-Aided GAN [64], the discriminator 579

utilizes the CLIP model as its foundation. The adversarial 580

loss is defined as follows: 581

Ladv =
1

V + 1
{

V∑
v=0

E[logD(xGT
v )] +

V∑
v=0

E[log(1−D(x̂v))]+

E[logD(xGT
0 )] + E[log(1−D(xaux))}

(22)
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CLIP Loss: To improve the consistency between the gener-582

ated images and the text prompt ytext, a CLIP loss [56] is583

employed for text-image alignment.584

Lclip =
1

V + 1
[

V∑
v=0

(1− cos(CLIP-I(x̂v),CLIP-T(ytext)))+

(1− cos(CLIP-I(xaux),CLIP-T(ytext)))]

(23)

where CLIP-I is the CLIP image encoder, and CLIP-T is the585

CLIP text encoder.586

Reconstruction Loss: The generated images are compared587

to the ground truth images to ensure consistency through a588

reconstruction loss. For each input condition image and text589

prompt, we aim to minimize:590

Lrecon =
1

V + 1
[

V∑
v=0

(LMSE(x̂v, x
GT
v ) + λ

V∑
v=0

LLPIPS(x̂v, x
GT
v ))+

LMSE(xaux, x
GT
0 ) + λLLPIPS(xaux, x

GT
0 )]

(24)
where LMSE is the normalized pixel-wise L2 loss, LLPIPS is591

the perceptual image patch similarity [54]. λ is a customized592

weight to balance the losses. In default, λ = 1.0.593

Overall Loss: The overall loss is a weighted sum of the594

aforementioned losses:595

Loverall = Lrecon + λadvLadv + λclipLclip (25)

where λadv = 0.5, λclip = 5.0 in default.596

Efficient Training: By default, we configure the rendered597

image resolution to 256 × 256. However, performing direct598

computations on the entire 256 × 256 renderings using599

Loverall is likely to lead to GPU memory overflow during600

training, mainly due to NeRF’s significant memory require-601

ments. To address this issue, we opt for a straightforward602

yet efficient approach that trades space for time. Firstly,603

we partition the original 256 × 256 images into smaller604

local patches with a resolution of 128 × 128. These local605

patches are randomly chosen based on weighted sampling606

of foreground pixels using the ground truth image mask.607

Secondly, we downsample the original 256 × 256 images608

to smaller global images with a resolution of 128 × 128.609

Similar to the approach in LRM [6], we utilize the deferred610

back-propagation technique [65] to conserve GPU memory.611

In essence, the adjusted loss function is as delineated below:612

Loverall = Llocal
recon + L

global
recon + λadvL

global
adv + λclipL

global
clip (26)

where global means the loss is computed on the global613

images. local means the loss is computed on the sampled614

local patches.615

4 EXPERIMENT616

4.1 Experiment Details617

4.1.1 Training Details618

Our training dataset comprises the training split of the G-619

Objaverse dataset [37], which is a subset of Objaverse [35].620

We have randomly selected 260k samples from the original621

G-Objaverse for training, while the remaining samples are622

allocated for validation and evaluation purposes. The text623

prompts for each sample are sourced from Cap3D [66].624

Additionally, the visual condition maps are derived from625

the multi-view images in the dataset, encompassing edge,626

sketch, depth, and normal annotations. Edge annotations627

are generated using the Canny edge detector [67], sketch628

annotations are produced with the sketch generation model629

from ControlNet [34]. Depth and normal annotations are 630

provided by G-Objaverse, and further normalized to match 631

the format of MVControl (Li et al., 2024). 632

We initialize our network using the weights from the 633

pre-trained OpenLRM-base [68]. The image-conditioned 634

transformer from OpenLRM is removed, and our proposed 635

conditional backbone, incorporating text and visual condi- 636

tions (such as sketch, edge, depth, and normal), is appended 637

as input. During training, the cross-attention layers in the 638

triplane transformer of OpenLRM are activated, while the 639

remaining layers are kept frozen. We utilize the AdamW 640

optimizer with a conservative learning rate of 4e-4 for 641

training ControLRM on 16 Nvidia V100-32G GPUs. Each 642

batch comprises 96 text-condition-image pairs. The training 643

duration is estimated to be approximately 4-6 days for 644

ControLRM-T and 5-6 days for ControLRM-D. The input 645

resolution of the condition image is set to 336, while the 646

rendered image resolution is set to 256 647

4.1.2 Evaluation Dataset 648

For evaluation, we collect test samples from real world 649

datasets rather than manually generated samples [14] to en- 650

sure unbiased generation. Following the selection principle 651

of MVControl [14] and TripoSR [30], test data is gathered 652

from three distinct datasets for comparative analysis in the 653

subsequent experiments. 654

(1) G-OBJ: We collect 118 samples with highest clip 655

scores between the text annotation and multi-view images 656

from the test split of G-Objaverse dataset [37], ensuring they 657

are absent from the training data. The text annotation is 658

obtained from Cap3D [66]. We manually select one reference 659

view from all provided 40 views in the dataset, and extract 660

the edge/sketch/depth/normal condition maps on that ref- 661

erence view. The remaining views are used as ground truth 662

multi-view images for benchmark evaluation. 663

(2) GSO: We also collect 80 samples from the Google 664

Scanned Objects dataset [69] for zero-shot evaluation. This 665

dataset features more than one thousand 3D-scanned house- 666

hold items, serving as a valuable resource for assessing 667

the zero-shot generalization capabilities of the proposed 668

method. In analogy with G-OBJ, we manually select a single 669

reference view from the 32 available views in the dataset. 670

Subsequently, edge/sketch/depth/normal condition maps 671

are generated for this chosen reference view. Text annota- 672

tions are obtained using BLIP2 [70]. The input data contains 673

the prepared 2D condition map and the corresponding text 674

prompt. The remaining views are utilized as the ground 675

truth for evaluation benchmark. 676

(3) ABO: We also select 80 samples from the Amazon 677

Berkeley Objects dataset [71] for zero-shot evaluation. The 678

Amazon Berkeley Objects dataset is a comprehensive 3D 679

dataset comprising product catalog images, metadata, and 680

artist-designed 3D models featuring intricate geometries 681

and materials based on real household objects. Text anno- 682

tations are generated using BLIP2 caption model [70]. We 683

manually select one reference view from the 72 available 684

views provided in the dataset and extract the four condition 685

maps (edge/sketch/depth/normal). The remaining views 686

are emplyed as ground truth for benchmark evaluation. 687
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TABLE 1
Quantitative results of controllability under Edge (Canny) condition in

comparison with other SOTA 3D generation methods on G-OBJ. ↑
denotes higher result is better, while ↓ means lower is better. We report

the metrics of C-PSNR, C-SSIM, and C-MSE in the table. The best
results are highlighted with underline, and the second best ones are

highlighted with
:::::::
wavy-line.

Edge (Canny)Methods C-PSNR ↑ C-SSIM ↑ C-MSE ↓

GSGEN [40] 11.54 0.768 0.0807
GaussianDreamer [41] 11.08 0.755 0.0866
DreamGaussians [39] 8.98 0.667 0.1341
VolumeDiffusion [47] 11.75 0.803 0.0773
3DTopia [46] 8.78 0.692 0.1430
MVControl [14] 10.14 0.738 0.1052
ControLRM-T (Ours)

::::
16.14 0.891

::::
0.0349

ControLRM-D (Ours) 16.17
::::
0.886 0.0314

TABLE 2
Quantitative results of Controllability under Sketch condition in

comparison with other SOTA 3D generation methods on G-OBJ. ↑
denotes higher result is better, while ↓ means lower is better. We report

the metrics of S-PSNR, S-SSIM, and S-MSE in the table. The best
results are highlighted with underline, and the second best ones are

highlighted with
:::::::
wavy-line.

SketchMethods S-PSNR ↑ S-SSIM ↑ S-MSE ↓

GSGEN [40] 13.19 0.7629 0.0499
GaussianDreamer [41] 13.23 0.7934 0.0503
DreamGaussians [39] 13.14 0.7740 0.0516
VolumeDiffusion [47] 15.16 0.8247 0.0326
3DTopia [46] 13.73 0.7902 0.0443
MVControl [14] 12.56 0.7406 0.0603
ControLRM-T (Ours) 18.02 0.9084 0.0189
ControLRM-D (Ours)

::::
17.56

::::
0.9000

:::::
0.0208

4.1.3 Baselines688

We compare our proposed ControLRM with other state-689

of-the-art baselines in the 3D generation task, including:690

(1) Score-Distillation-Sampling (SDS) methods: GSGEN,691

GaussianDreamer, and DreamGaussians [8]; (2) 3D-based692

Diffusion models: VolumeDiffusion and 3DTopia [46], [47];693

(3) Controllable 3D Diffusion models: MVControl [14]. It is694

important to note that MVControl is the most relevant state-695

of-the-art controllable 3D generation method. For compari-696

son purposes, we utilize the official implementations of the697

aforementioned methods in the subsequent experiments.698

4.2 Experiment Results of 3D Controllability699

4.2.1 Evluation Metrics700

To assess the controllability of various 3D generation meth-701

ods, we have developed metrics tailored to gauge the con-702

sistency of input 2D conditions following ControlNet++703

[72]. Four distinct conditions are taken into account: edge704

(canny), sketch, depth, and normal. Specific metrics have705

been intricately designed for each condition to quantify the706

extent to which the condition is maintained throughout the707

generation process:708

(1) Edge Condition: Given the 2D edge map on the709

reference view, we use the generated 3D content to render710

a new image at the same view. Subsequently, a Canny711

detector [67] is employed to extract the edge image from712

the rendered image, allowing for a comparison between the713

edge image and the original condition image. The associ-714

ated hyperparameters for Canny detector is the same as715

TABLE 3
Quantitative results of Controllability under Depth condition in

comparison with other SOTA 3D generation methods on G-OBJ. ↓
denotes lower result is better. We report the metrics of M-MSE, Z-MSE,

and R-MSE in the table. The best results are highlighted with
underline, and the second best ones are highlighted with

:::::::
wavy-line.

DepthMethods M-MSE ↓ Z-MSE ↓ R-MSE ↓

GSGEN [40] 0.1504 0.1381 0.0425
GaussianDreamer [41] 0.1019 0.1271 0.0558
DreamGaussians [39] 0.1035 0.1284 0.0435
VolumeDiffusion [47] 0.1615 0.1156 0.0444
3DTopia [46] 0.1364 0.1374 0.0412
MVControl [14] 0.0692 0.0695 0.0655
ControLRM-T (Ours)

::::
0.0287

::::
0.0198

::::
0.0355

ControLRM-D (Ours) 0.0285 0.0174 0.0331

TABLE 4
Quantitative results of Controllability under Normal condition in

comparison with other SOTA 3D generation methods on G-OBJ. ↓
denotes lower result is better. We report the metrics of NB-MSE, and
DN-Consistency in the table. The best results are highlighted with

underline, and the second best ones are highlighted with
:::::::
wavy-line.

NormalMethods NB-MSE ↓ DN-Consistency ↓

GSGEN [40] 0.0140 0.0412
GaussianDreamer [41] 0.0133 0.0404
DreamGaussians [39] 0.0141 0.0372
VolumeDiffusion [47] 0.0129 0.0468
3DTopia [46] 0.0240 0.0431
MVControl [14] 0.0103 0.0421
ControLRM-T (Ours)

:::::
0.0038

:::::
0.0216

ControLRM-D (Ours) 0.0034 0.0205

ControlNet [34]. To evaluate the resemblance of the edge 716

maps, performance metrics such as Peak Signal-to-Noise 717

Ratio (PSNR), Structural Similarity Index (SSIM), and Mean 718

Squared Error (MSE) are computed following [6]. These 719

metrics are further noted as C-PSNR, C-SSIM, and C-MSE. 720

(2) Sketch Condition: Given the 2D sketch image on 721

the reference view, we use the generated 3D content to 722

render a new image at the same view. Subsequently, the 723

sketch extraction network provided by ControlNet [34] is 724

employed to derive the sketch map from the rendered 725

image. We emply PSNR, SSIM, MSE assess the similarity 726

between the generated sketch map and the original sketch 727

map. These metrics are referred to as S-PSNR, S-SSIM, and 728

S-MSE in this study. 729

(3) Depth Condition: Given the 2D depth image on the 730

reference view, we use the generated 3D content to render 731

the image and the depth at the same viewpoint. 732

On the one hand, we can evaluate the depth consistency 733

with foundation models in monocular depth estimation (i.e. 734

Midas [73], ZoeDepth [74]) following ControlNet++ [72]. 735

These foundation models are utilized to produce a depth 736

map based on the input rendered image. Analogously, they 737

are capable of estimating the depth map given a ground 738

truth image as input on the reference view. By leveraging 739

the depth prior obtained from these foundation models, the 740

Mean Squared Error (MSE) distance between the estimated 741

depth maps of the ground truth image and the rendered 742

image can indicate controllability under various depth con- 743

ditions. When using Midas as the foundation model, the 744

metric is denoted as M-MSE; whereas, if ZoeDepth is em- 745

ployed, the metric is referred to as Z-MSE. 746

On the other hand, an alternative method to assess depth 747
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Fig. 4. Visualization comparison of controllability under different conditional controls (Edge/Depth/Normal/Sketch).

consistency in 3D space involves comparing the disparity748

between the rendered depth map and the input conditional749

depth map. The disparity, measured by MSE distance, be-750

tween the rendered depth map and the input conditional751

depth map can also reflect the model’s controllability per-752

formance. However, discrepancies in scale between the esti-753

mated relative depth map and the input conditional depth754

map may adversely affect the accuracy of the MSE metric.755

Thus, it becomes essential to address the scale discrepancy756

before evaluating the similarity between these depth maps.757

Following the approach outlined in [73], we compute an758

ordinary least squares solution to adjust for the scale and759

shift between these depth maps. Subsequently, the scale and760

shift transformation is applied to the relative depth map,761

and the MSE is then calculated between it and the input762

conditional depth map. This enables the calculation of a763

scale-agnostic MSE metric to evaluate the similarity between764

the depth maps, providing an effective way to evaluate the765

3D consistency of the rendered depth map, denoted as R-766

MSE.767

(4) Normal Condition: Given the 2D normal map on the768

reference view, we use the generated 3D results to render769

the image and depth at the same viewpoint.770

Firstly, we can assess the normal consistency with771

pre-trained models in surface normal estimation, such as 772

Normal-BAE [75] following ControlNet++ [72]. The model 773

for surface normal estimation facilitates the extraction of 774

normal maps from rendered images. Similarly, the ground 775

truth image can be input into the model to derive estimated 776

normal maps. As the pre-trained model can grasp the sur- 777

face normal priors from the input images, the Mean Squared 778

Error (MSE) distance between these normal maps can indi- 779

cate the controllability performance of the generation model. 780

This evaluation metric, based on Normal-BAE, is referred to 781

as NB-MSE. 782

Secondly, the evaluation of normal consistency in 3D 783

space involves comparing the resemblance between the ren- 784

dered depth maps and the input conditional normal maps. 785

The rendered depth map on the reference view is normal- 786

ized to 0 to 1 first, and then used to calculate the normal 787

map. The MSE distance between this converted normal map 788

and the input conditional normal map can demonstrate the 789

normal consistency throughout the generation process. This 790

metric, influenced by the depth-normal consistency in 3D 791

space, is labeled as DN-consistency. 792

4.2.2 Quantitative Results 793

Results with Canny Condition: The comparison of the 794

controllability of 3D generation methods under the Edge 795
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TABLE 5
Quantitative comparison with SOTA 3d generation methods on G-Objaverse (G-OBJ) test set. We provide the zero-shot evaluation results of FID
↓, CLIP-I ↑ and CLIP-T ↑ on the test samples. The best results are highlighted with underline, and the second best ones are highlighted with

:::::::
wavy-line. We also provide the time consumption of each method on a single V100-32G GPU to compare the efficiency.

Methods
Metrics Time ↓ Reference View All Views Front-K Views

FID ↓ CLIP-I ↑ CLIP-T ↑ FID ↓ CLIP-I↑ CLIP-T ↑ FID ↓ CLIP-I ↑ CLIP-T ↑
GSGEN [40] ≈ 40 min 235.09 0.756 0.308 340.39 0.762 0.298 357.13 0.781 0.310
GaussianDreamer [41] ≈ 2 min 182.70 0.802 0.295 268.95 0.803 0.309 282.59 0.823 0.321
DreamGaussians [39] ≈ 15 min 247.48 0.763 0.281 351.87 0.761 0.279 368.76 0.783 0.293
VolumeDiffusion [47] 142.55 sec 218.09 0.728 0.237 327.76 0.725 0.241 348.39 0.752 0.257
3DTopia [46] 177.89 sec 228.79 0.719 0.267 289.02 0.749 0.280 329.29 0.808 0.312
MVControl [14] 8.92 sec 175.43 0.829 0.296 251.71 0.811 0.291 280.40 0.856 0.318
ControLRM-T (Ours) 0.148 sec 100.58 0.915

::::
0.309

:::::
166.03

::::
0.879 0.292 144.02

::::
0.932

::::
0.323

ControLRM-D (Ours) 0.503 sec
:::::
104.08

::::
0.911 0.315 163.25 0.887

::::
0.300

:::::
148.76 0.935 0.330

TABLE 6
Quantitative comparison with SOTA controllable 3D text-to-3d method (MVControl [14]) on G-Objaverse (G-OBJ) [37] test set. 4 kinds of different
visual condition types are utilized for comparison here, including Edge, Depth, Normal, and Sketch. We provide the zero-shot evaluation results
of FID ↓, CLIP-I ↑ and CLIP-T ↑ on the test samples. The best results are highlighted with underline, and the second best ones are highlighted

with
:::::::
wavy-line.

Reference View All Views Front-K ViewsMetrics Methods Edge Depth Normal Sketch Edge Depth Normal Sketch Edge Depth Normal Sketch

MVControl [14] 226.01 158.38 144.59 172.73 300.10 229.45 215.27 262.03 328.99 257.62 244.51 290.49
ControLRM-T

::::
99.51 102.88 97.49 102.43

:::::
165.21 165.49

:::::
163.11

:::::
170.33

:::::
141.54 147.18 140.73 146.63FID ↓

ControLRM-D 98.45
:::::
109.20

:::::
103.09

:::::
105.57 158.73

:::::
166.36 161.62 166.28 139.02

:::::
156.91

:::::
148.17

:::::
150.95

MVControl [14] 0.771 0.854 0.866 0.825 0.768 0.831 0.840 0.806 0.816 0.875 0.883 0.851
ControLRM-T

::::
0.915 0.914 0.919 0.912

::::
0.879

::::
0.881

::::
0.881

:::::
0.876

::::
0.933 0.932

::::
0.932

:::::
0.930CLIP-I ↑

ControLRM-D 0.920
::::
0.902

::::
0.912

:::::
0.911 0.889 0.885 0.888 0.886 0.939

::::
0.931 0.935 0.935

MVControl [14] 0.262 0.311 0.312 0.300 0.264 0.302 0.304 0.291 0.295
::::
0.326 0.330 0.318

ControLRM-T
::::
0.309

::::
0.308

::::
0.310

:::::
0.309

::::
0.291 0.292 0.293 0.290

::::
0.322 0.323

::::
0.324

:::::
0.322CLIP-T ↑

ControLRM-D 0.318 0.311 0.316 0.315 0.301
::::
0.299

::::
0.300 0.299 0.332 0.327 0.330 0.329

TABLE 7
Quantitative comparison with SOTA 3d generation methods on Google Scanned Objects (GSO) test set. We provide the zero-shot evaluation
results of FID ↓, CLIP-I ↑ and CLIP-T ↑ on the test samples. The best results are highlighted with underline, and the second best ones are
highlighted with

:::::::
wavy-line. We also provide the time consumption of each method on a single V100-32G GPU to compare the efficiency.

Methods
Metrics Reference View All Views Front-K ViewsTime ↓ FID ↓ CLIP-I ↑ CLIP-T ↑ FID ↓ CLIP-I ↑ CLIP-T ↑ FID ↓ CLIP-I ↑ CLIP-T ↑

GSGEN [40] ≈ 40 min 273.54 0.734 0.286 344.61 0.740 0.289 360.57 0.759 0.300
GaussianDreamer [41] ≈ 2 min 189.41 0.815 0.305 278.70 0.810 0.300 287.20 0.829 0.311
DreamGaussians [39] ≈ 15 min 271.80 0.761 0.281 359.65 0.760 0.279 373.53 0.784 0.290
VolumeDiffusion [47] 142.55 sec 236.01 0.719 0.261 299.61 0.715 0.259 316.35 0.742 0.273
3DTopia [46] 177.89 sec 274.99 0.698 0.274 331.39 0.727 0.283 369.27 0.799 0.311
MVControl [14] 8.92 sec 194.97 0.848 0.298 278.08 0.816

::::
0.288 301.31 0.870 0.312

ControLRM-T (Ours) 0.148 sec 165.44 0.899
::::
0.309

:::::
260.75 0.846 0.289

:::::
251.57 0.912

::::
0.316

ControLRM-D (Ours) 0.503 sec
:::::
162.28

::::
0.896 0.313 171.13

::::
0.838 0.302 247.06

::::
0.908 0.322

(Canny) condition is presented in Table 1. The aforemen-796

tioned metrics of C-PSNR, C-SSIM, and C-MSE in Sec.797

4.2.1 are utilized for evaluating controllability. Our approach798

establishes a new state-of-the-art benchmark, surpassing799

other methods by a significant margin. Specifically, our800

ControLRM-D and ControLRM-T achieve C-PSNR scores801

of 16.17 and 16.14 respectively, exhibiting an improvement802

of approximately 6 compared to the baseline performance.803

Similar improvements can also be witnesses in C-SSIM and804

C-MSE.805

Results with Sketch Condition Tab. 2 presents the state-of-806

the-art comparison for the controllability of 3D generation807

results on Sketch condition. The evaluation includes the808

results of three metrics introduced in Sec. 4.2.1: S-PSNR,809

S-SSIM, and S-MSE. These metrics can reflect how much810

sketch control information is preserved in the generated 3D811

results. The results reveals that our models, ControLRM-812

D and ControLRM-T, outperform other methods signifi-813

cantly across all three metrics. In comparison to the baseline814

method, MVControl, our approach showcases a significant815

enhancement, boasting around 6 points in S-PSNR, 0.25 in816

S-SSIM, and 0.04 in S-MSE. 817

Results with Depth Condition Tab. 3 shows the state-of- 818

the-art comparison for the controllability of 3D generation 819

methods on Depth condition. We report the scores of M- 820

MSE, Z-MSE, and R-MSE introduced in Sec. 4.2.1. From 821

the results in the table, our proposed methods, ControLRM- 822

D and ControLRM-T, outperform other baselines across 823

all three metrics of depth controllability. Specifically, our 824

proposed method demonstrates an improvement of approx- 825

imately 0.04 in the M-MSE, 0.05 in Z-MSE, 0.03 in R-MSE, 826

compared to MVControl. 827

Results with Normal Condition Tab. 4 shows the state- 828

of-the-art comparison for the controllability of 3D gener- 829

ation methods on Normal condition. The evaluation met- 830

rics include NB-MSE and DN-Consistency introduced in 831

Sec. 4.2.1. From the comparison results, our proposed 832

ControLRM-D/ControLRM-T models outperforms other 833

baselines in both NB-MSE and DN-Consistency metrics. 834

Specifically, ControLRM-D and ControLRM-T achieve NB- 835

MSE scores of 0.0034 and 0.0038, respectively, representing 836

a notable improvement compared to MVControl (0.0103 837
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TABLE 8
Quantitative comparison with SOTA controllable 3D text-to-3d method (MVControl [14]) on Google Scanned Objects (GSO) [69] test set. 4 kinds of
different visual condition types are utilized for comparison here, including Edge, Depth, Normal, and Sketch. We provide the zero-shot evaluation

results of FID ↓, CLIP-I ↑ and CLIP-T ↑ on the test samples. The best results are highlighted with underline, and the second best ones are
highlighted with

:::::::
wavy-line.

Reference View All Views Front-K ViewsMetrics Methods Edge Depth Normal Sketch Edge Depth Normal Sketch Edge Depth Normal Sketch

MVControl [14] 219.89 187.77 179.74 192.48 311.91
:::::
256.08

:::::
255.68 288.64 342.59 272.83 270.02 319.81

ControLRM-T
:::::
156.60

:::::
167.11

:::::
173.60

:::::
164.44

:::::
253.59 262.95 269.62

:::::
256.84

:::::
245.12

:::::
253.76

:::::
257.62

:::::
249.79FID ↓

ControLRM-D 151.48 165.90 171.33 160.42 165.38 174.29 174.98 169.88 234.42 253.02 256.24 244.55

MVControl [14] 0.782 0.877 0.890 0.843 0.762
::::
0.841 0.851 0.811 0.815 0.895 0.907 0.864

ControLRM-T
::::
0.915

::::
0.896

::::
0.879

:::::
0.904 0.855 0.842

::::
0.835 0.852

::::
0.923 0.910

::::
0.894 0.919CLIP-I ↑

ControLRM-D 0.916 0.892 0.870 0.906
::::
0.854 0.826 0.820

:::::
0.850 0.928

::::
0.901 0.885 0.919

MVControl [14] 0.265 0.312 0.312 0.301 0.263
::::
0.298

::::
0.299

:::::
0.291 0.290 0.321 0.324 0.314

ControLRM-T
::::
0.311 0.306 0.301 0.318

::::
0.293 0.288 0.284

:::::
0.291

::::
0.320 0.317 0.311

:::::
0.317CLIP-T ↑

ControLRM-D 0.316 0.312
::::
0.308

:::::
0.314 0.304 0.301 0.300 0.303 0.326

::::
0.317

::::
0.316 0.323

TABLE 9
Quantitative comparison with SOTA 3d generation methods on Amazon Berkeley Objects (ABO) test set. We provide the zero-shot evaluation

results of FID ↓, CLIP-I ↑ and CLIP-T ↑ on the test samples. The best results are highlighted with underline, and the second best ones are
highlighted with

:::::::
wavy-line. We also provide the time consumption of each method on a single V100-32G GPU to compare the efficiency.

Methods
Metrics Reference View All Views Front-K ViewsTime ↓ FID ↓ CLIP-I ↑ CLIP-T ↑ FID ↓ CLIP-I ↑ CLIP-T ↑ FID ↓ CLIP-I ↑ CLIP-T ↑

GSGEN [40] ≈ 40 min 304.49 0.664 0.257 366.47 0.669 0.259 376.56 0.691 0.272
GaussianDreamer [41] ≈ 2 min 148.70 0.820 0.297 225.38 0.787 0.277 226.56 0.831 0.306
DreamGaussians [39] ≈ 15 min 340.64 0.729 0.248 392.95 0.723 0.247 406.35 0.750 0.290
VolumeDiffusion [47] 142.55 sec 288.28 0.698 0.247 350.46 0.679 0.242 372.49 0.715 0.262
3DTopia [46] 177.89 sec 247.89 0.692 0.273 231.55 0.751 0.272 259.88 0.844 0.312
MVControl [14] 8.92 sec 149.61 0.857 0.305 217.97 0.802

::::
0.291 236.81 0.868 0.316

ControLRM-T 0.148 sec
::::
85.08

::::
0.913

::::
0.311

:::::
202.14 0.827 0.282

:::::
160.12

::::
0.915

::::
0.320

ControLRM-D 0.503 sec 80.12 0.914 0.320 181.84
::::
0.836 0.292 152.37 0.918 0.324

TABLE 10
Quantitative comparison with SOTA controllable 3D text-to-3d method (MVControl [14]) on Amazon Berekely Objects (ABO) [71] test set. 4 kinds

of different visual condition types are utilized for comparison here, including Edge, Depth, Normal, and Sketch. We provide the zero-shot
evaluation results of FID ↓, CLIP-I ↑ and CLIP-T ↑ on the test samples. The best results are highlighted with underline, and the second best ones

are highlighted with
:::::::
wavy-line.

Reference View All Views Front-K ViewsMetrics Methods Edge Depth Normal Sketch Edge Depth Normal Sketch Edge Depth Normal Sketch

MVControl 204.89 127.76 101.67 164.11 254.40
:::::
197.09 183.39 236.99 268.67 221.58 201.11 255.85

ControLRM-T
::::
88.22

::::
93.60 84.00

:::::
74.49

:::::
207.31 220.16 196.77

:::::
184.30

:::::
162.46

:::::
171.38 157.38

:::::
149.24FID ↓

ControLRM-D 74.89 86.32
::::
86.82 72.45 173.57 189.60

:::::
192.93 171.27 149.25 156.44 159.65 144.15

MVControl 0.818 0.884 0.895 0.833 0.784 0.812 0.815 0.798 0.839 0.886 0.897 0.848
ControLRM-T

::::
0.909 0.909 0.907

:::::
0.925

::::
0.828

::::
0.800 0.830

:::::
0.848

::::
0.913

::::
0.911 0.908

:::::
0.926CLIP-I ↑

ControLRM-D 0.919 0.909
::::
0.898 0.931 0.850 0.814

::::
0.821 0.859 0.922 0.913

::::
0.903 0.934

MVControl 0.292 0.312 0.316 0.299
::::
0.282 0.295 0.300 0.287 0.310

::::
0.319 0.323 0.311

ControLRM-T
::::
0.302

::::
0.313 0.313

:::::
0.317 0.276 0.279 0.284

:::::
0.290 0.323 0.317 0.317

:::::
0.321CLIP-T ↑

ControLRM-D 0.319 0.320 0.316 0.326 0.294
::::
0.289

::::
0.285 0.300 0.323 0.324

::::
0.319 0.330

NB-MSE). Significant improvment of our models in DN-838

Consistency score can also be found in the table.839

4.2.3 Qualitative Results840

Controllable 3D generation requires the persistence of input841

conditions as a crucial ability. The generated 3D contents842

should retain the control information of the input condi-843

tions. For qualitative comparison of 3D controllability, we844

visualize the generated results and the extracted condition845

maps in Fig. 4. The first two columns display the visualiza-846

tion of text and 2D visual conditions. Subsequent columns847

exhibit the visualization results of the rendered images848

and the extracted visual condition map from them. The849

comparison encompasses several methods: our ControLRM-850

D (columns 3-4), ControLRM-T (columns 5-6), MVControl851

(columns 7-8) [14], and DreamGaussian (columns 9-10) [39].852

Each row of the figure corresponds to a specific control853

condition: Rows 1-2 (Edge), Rows 3-4 (Sketch), Rows 5-6854

(Depth), and Rows 7-8 (Normal). As shown in the figure,855

ControLRM-D and ControLRM-T can effectively preserve856

the control information in the generated 3D content. For 857

instance, in the first and second rows, the controllability 858

results of MVControl and DreamGaussian under the Canny 859

condition appear noticeably fuzzier compared to those of 860

ControLRM-D/T. It demonstrates our proposed method can 861

effectively maintain the controllability during 3D genera- 862

tion, providing better scalability compared with existing 863

methods. 864

4.3 Experimental Results of Controllable 3D Genera- 865

tion 866

4.3.1 Evaluation Metrics 867

For evaluation, we quantitatively compare our proposed 868

method with baselines by measuring the quality of gener- 869

ated 3D contents with FID, the consistency to the reference 870

ground truth image with CLIP-I, and the consistency to the 871

reference text description with CLIP-T. 872

Render FID: Following LATTE3D [49], we compute the 873

Fréchet Inception Distance (FID) [76] between the render- 874

ings of the generated 3D contents and the collected ground 875
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Fig. 5. Qualitative comparison with SOTA 3D generation methods, including MVControl [14], DreamGaussian [39], and VolumeDiffusion [47]. To
avoid cherry-picking, the input conditions are extracted from G-OBJ, GSO, and ABO datasets. None of the images are observed by our model
during training. Please zoom in for clearer visualization.

truth multi-view images. This metric can measure how well876

the generated shapes align with those from the 2D prior in877

visual quality.878

CLIP-I: Following MVControl [14], we measure the CLIP879

scores of image features extracted from the renderings of880

the generated 3D contents and the collected ground truth881

images on different views. This metric aims to reveal the882

similarity between the rendering results of generated 3D883

contents and the ground truth images.884

CLIP-T: Following MVControl [14], we also measure the885

CLIP scores of the image features extracted from the render-886

ings and the given text prompt. This metric can measure the887

similarity between the generated 3D contents and the given888

text descriptions.889

Multi-view Settings: The evaluation protocol of MV-890

Control [14] only calculate the CLIP score between the891

generated multi-view images and real ground truth im- 892

ages on the reference view. However, merely evaluating 893

the performance with ground truth on only one reference 894

view is not comprehensive for comparing 3D generated 895

contents. Because a single view can only capture a portion 896

of the 3D object, often omitting unseen parts. Consequently, 897

utilizing multi-view ground truth is essential to enhance the 898

evaluation protocol. As discussed in Sec. 4.1.2, we collect 899

samples with multi-view ground truth from G-OBJ, GSO, 900

and ABO. By incorporating these multi-view samples, we 901

enhance the original benchmark used in MVControl [14] 902

to be more comprehensive in the following manner: (1) 903

Reference View: The rendered image and ground truth 904

image on the reference view are utilized to compute metrics 905

including FID, CLIP-I, and CLIP-T; (2) All Views: All views 906

are taken into account when calculating the three metrics 907
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Fig. 6. Visualization of rendered novel views (RGB and depth) generated by our ControLRM-D. The samples are extracted from G-OBJ, GSO, and
ABO datasets. None of the images are observed by our model during training. Please zoom in for clearer visualization.

between the rendered and ground truth images; (3) Front-908

K Views: Given the provision of only one reference view,909

the views on the back side may lack crucial cues for pre-910

cise prediction, potentially leading to unreliable results in911

multi-view scenarios. Therefore, incorporating an additional912

evaluation of the views in front of the reference view is913

necessary. Consequently, we select the K views closest to the914

given reference view for further metric computation, with915

the default value of K set to 4.916

4.3.2 Quantitative Comparison on G-OBJ917

To demonstrate the effectiveness of the proposed method918

in controllable 3D generation, we present the quantitative919

results on the G-OBJ benchmark in Tab. 5 and 6. Tab. 5920

shows the comparison of FID, CLIP-I, CLIP-T with other921

baselines. We report the mean score of these metrics under922

four different conditions (edge/depth/normal/sketch). The923

time efficiency of each method on a single V100-32G GPU924

is reported as well. In the tables, we adopt three different925

multi-view settings during evaluation as discussed in Sec.926

4.3.1. As shown in Tab. 5, ControLRM-T achieves an infer-927

ence speed of 0.148 seconds per sample, while ControLRM-928

D achieves 0.503 seconds per sample. Our ControLRM mod-929

els significantly enhance the inference speed by an order of930

magnitude when compared to alternative methods. In addi-931

tion to the siginificant improvement in time efficiency, the932

benchmark results on nine metrics also show that our Con-933

troLRM can achieve significantly better performance than934

other baselines. For example, ControLRM-D/ControLRM-935

T achieves 104.08/101.06 Reference FID score, 0.911/0916 936

Reference CLIP-I score, and 0.315/0.309 Reference CLIP-T 937

score. The baselines achieve over 175 FID score, which is sig- 938

nificantly higher than ControLRM. It demonstrates the su- 939

perior ability and efficiency of the proposed method in con- 940

trollable 3D generation. Tab. 6 shows the direct comparison 941

with SOTA method (MVControl [14]) on four different vi- 942

sual conditions . Similar to Tab. 5, the metrics of FID, CLIP- 943

I and CLIP-T under three different multi-view settings are 944

used to reveal the quality of the generated 3D contents. On 945

most of the evaluation metrics, our ControLRM can achieve 946

competetive and even better performance than MVControl, 947

and the inference speed is significantly faster Specifically, 948

the inference speeds of ControLRM-D (0.503 sec/sample) 949

and ControLRM-T (0.148 sec/sample) are much faster than 950

MVControl (8.92 sec/sample). It demonstrates the superior 951

ability and efficiency of the proposed method in controllable 952

3D generation. 953

4.3.3 Quantitative Comparison on GSO 954

To demonstrate the generalization ability of the proposed 955

method on the task of controllable 3D generation, we 956

provide the experimental results on GSO benchmark and 957

compare our model with other state-of-the-art methods 958

introduced in Sec. 4.1.3. Similar to Sec. 4.3.2, we also use 959

the evaluation metrics of FID, CLIP-I, and CLIP-T to 960

measure the performance on controllable 3D generation. 961

These metrics are also calculated under 3 different multi- 962

view settings as introduced in Sec. 4.3.1. In Tab. 7, we 963
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Fig. 7. Visualization of the evaluation results (FID/CLIP-I/CLIP-T) at different amounts of optimization time on a single V100-32G GPU. In
comparison with the state-of-the-art controllable 3D generation method, MVControl [14], our ControLRM can achieve over faster speed and better
performance.

present the quantitative comparison among our proposed964

ControLRM and the baselines. In most of the reported965

metrics, our ControLRM can achieve competetive and even966

better performance compared with the baselines. As the967

table shows, our ControLRM-D and ControLRM-T outper-968

form other baselines on the metrics of FID and CLIP-I in969

all view settings. For example, under the reference view970

setting, our ControLRM-D/T can achieve 169.73/169.69971

FID, significantly lower than the best one of the baselines,972

MVControl (194.97 FID score). The zero-shot experiments973

on GSO can demonstrate the great generalization ability of974

the proposed method on unseen test cases. We also provide975

the quantitative comparison between our ControLRM and976

MVControl [14] in Tab. 8 under 4 different input condi-977

tions. The table shows that our proposed ControLRM is978

still competitive compared with MVControl. For Edge and979

Sketch condition, both of ControLRM-D and ControLRM-980

T achieves better performance than MVControl in terms981

of FID, CLIP-I, and CLIP-T. For the Depth and Normal982

conditions, ControLRM-D competes effectively with MV-983

Control, although ControLRM-T shows slightly inferior per-984

formance. An important reason is the preciseness of the985

given depth or normal map in controllable 3D generation.986

Our ControLRM is trained using the ground truth depth987

or normal map of the dataset, which provides absolutely 988

precise geometric prior as conditional input. Whereas in 989

the GSO benchmark, we extract the depth and normal 990

maps using the annotator provided by MVControl. The 991

estimated depth and normal maps generated by the models 992

provided by MVControl lack precision, leading to signif- 993

icant deviations in the predicted results. This inaccuracy 994

can be misleading for ControLRM, which relies on precise 995

geometric conditions. 996

4.3.4 Quantitative Comparison on ABO 997

To evaluate the zero-shot generalization performance on 998

controllable 3D generation, we further conduct experiments 999

on ABO benchmark. The quantitative comparison with 1000

other state-of-the-art methods in 3D generation introduced 1001

in Sec. 4.1.3 is presented in Tab. 9. The table employs the 1002

metrics of FID, CLIP-I, and CLIP-T to evaluate the perfor- 1003

mance of controllable 3D generation. These metrics are com- 1004

puted under three distinct multi-view settings discussed in 1005

Section 4.3.1. From the table, we can find that ControLRM- 1006

D outperforms other baselines on all metrics. ControLRM- 1007

T achieves the second best performance in most of these 1008

metrics. In Tab. 10, we compare our ControLRM with MV- 1009

Control quantitatively under 4 different input conditions. In 1010
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TABLE 11
Ablation analysis of each component in the training losses.

Models Canny
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ CLIP-I ↑ CLIP-T ↑

Basic Training (Lrecon) 18.810 0.8198 0.1723 105.752 0.9061 0.3031
+Adv Loss (Ladv) 19.445 0.8303 0.1581 100.163 0.9145 0.3085
+CLIP Loss (Lclip) 19.452 0.8306 0.1579 99.867 0.9147 0.3087

+2D Auxiliary (xaux) 19.454 0.8306 0.1579 99.512 0.9150 0.3091

Models Depth
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ CLIP-I ↑ CLIP-T ↑

Basic Training (Lrecon) 19.476 0.8314 0.1578 106.049 0.9079 0.3036
+Adv Loss (Ladv) 20.051 0.8414 0.1469 103.625 0.9127 0.3068
+CLIP Loss (Lclip) 20.066 0.8416 0.1465 103.220 0.9131 0.3075

+2D Auxiliary (xaux) 20.070 0.8417 0.1464 102.875 0.9135 0.3078

Models Normal
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ CLIP-I ↑ CLIP-T ↑

Basic Training (Lrecon) 19.425 0.8312 0.1618 102.247 0.9133 0.3033
+Adv Loss (Ladv) 19.903 0.8371 0.1518 98.694 0.9168 0.3063
+CLIP Loss (Lclip) 19.905 0.8374 0.1517 97.724 0.9180 0.3103

+2D Auxiliary (xaux) 19.909 0.8375 0.1516 97.489 0.9189 0.3103

Models Sketch
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ CLIP-I ↑ CLIP-T ↑

Basic Training (Lrecon) 18.910 0.8205 0.1703 109.158 0.9023 0.3048
+Adv Loss (Ladv) 19.546 0.8315 0.1588 103.164 0.9113 0.3085
+CLIP Loss (Lclip) 19.552 0.8318 0.1585 102.710 0.9118 0.3087

+2D Auxiliary (xaux) 19.554 0.832 0.1583 102.426 0.9121 0.309

the ABO benchmark, ControLRM-D exhibits competitive or1011

superior performance in terms of FID, CLIP-I, and CLIP-1012

T when compared to MVControl across all four conditions.1013

Conversely, our lightweight model, ControLRM-T, performs1014

slightly less effectively than MVControl under depth and1015

normal conditions but excels in canny and sketch condi-1016

tions. As outlined in Sec. 4.3.3, the extraction of depth and1017

normal maps relies on pre-trained models supplied by MV-1018

Control. Notably, ControLRM is trained using ground truth1019

depth and normal maps, which differ from the estimated1020

maps provided by the pre-trained models. This distribution1021

discrepancy between the ground truth and estimated maps1022

adversely impacts the performance of ControLRM.1023

4.3.5 Qualitative Results1024

In Fig. 5, we compare our ControLRM-D/T with state-of-1025

the-art 3D generation methods: MVControl [14], Dream-1026

Gaussian [39], and VolumeDiffusion [47]. The figure dis-1027

plays rendered novel views under four different condition1028

controls (Edge/Depth/Normal/Sketch). Our model demon-1029

strates superior performance compared to other baselines,1030

exhibiting higher quality and consistency in the generated1031

3D contents. To ensure unbiased evaluation, we adopt in-1032

put samples collected from G-OBJ, GSO, and ABO which1033

are unseen in the training dataset following LRM [6]. The1034

figure illustrates the capability of our ControLRM-D/T to1035

infer semantically plausible 3D content from a single-view1036

input visual condition. Additionally, we showcase more1037

examples of generated 3D content from input conditions1038

generated by G-OBJ, GSO, and ABO in Figure 6, produced1039

by our ControLRM-D. The rendered images and depth maps1040

in novel views are jointly visualized. Our model adeptly1041

captures the intricate geometry of diverse input conditions1042

(such as hands, guns, axes, etc.), and maintains consistent1043

texture generation across the outputs. The fidelity to the1044

input visual conditions in the generated results underscores1045

the exceptional performance and generalization capabilities1046

of our model.1047

4.4 Extra Experiments1048

Efficiency Comparison: To provide a direct comparison1049

of efficicency, we compare our ControLRM-D/T with the1050

SOTA controllable 3D generation model MVControl [14] 1051

in Fig. 7. MVControl consists of two stages: the first stage 1052

generates a coarse 3D content, and the second stage attempts 1053

to optimize the 3D content with test-time optimization us- 1054

ing SDS loss [8]. The quality of the generated 3D content 1055

improves over prolonged test-time optimization. Both of 1056

these stages are compared in the figure. We present visu- 1057

alizations of three evaluation metrics (FID, CLIP-I, CLIP-T) 1058

across three different multi-view settings (Reference View, 1059

All Views, Front-K Views) alongside the corresponding time 1060

consumption. The average time consumed for generating 1061

a single 3D content per sample on a V100-32G GPU is 1062

reported. We find that the refinement stage of MVControl 1063

tends to return worse performance than the coarse stage on 1064

the real-world data rather than the manually generated data 1065

used in their paper. 1066

Ablation Study: We conduct additional experiments to 1067

comprehensively analyize the contributions of the key com- 1068

ponents in our ControLRM framework. The ablation results 1069

under four different conditions are provided in Tab. 11. By 1070

default, we utilized ControLRM-T in the ablation experi- 1071

ments. For evaluation, we reported the metrics of PSNR, 1072

SSIM, LPIPS, FID, CLIP-I, and CLIP-T in the table follow- 1073

ing MVControl [14]. In the table, ”Basic Training” indicates 1074

that the model was solely trained with the reconstruction 1075

loss Lrecon. ”+Adv Loss” signifies the addition of adversarial 1076

loss Ladv to the reconstruction loss Lrecon. Similarly, ”+CLIP 1077

Loss” indicates the incorporation of clip loss Lclip. ”+2D 1078

Auxiliary” refers to the adoption of auxiliary supervision on 1079

xaux. The results demonstrate that the basic training scheme 1080

could achieve relatively good performance and meaning- 1081

ful generation with the support of large-scale pre-training 1082

weights from LRM [6], achieving a PSNR of approximately 1083

18-19 in each of the four different conditions. The inclusion 1084

of adversarial loss Ladv can led to an improvement of 3 1085

to 5 in FID. Furthermore, the addition of clip loss Lclip 1086

and 2D auxiliary supervision xaux can slightly enhance the 1087

FID by about 0.5. Overall, the results in the table highlight 1088

the effectiveness of each component in our ControLRM 1089

framework in enhancing the performance of controllable 3D 1090

generation. 1091

5 LIMITATION 1092

In this study, the quantitative and qualitative analysis prove 1093

the superiority of our proposed method, but we also realize 1094

that this work is still insufficient and discuss the follow- 1095

ing limitations: (1) Condition Expansion: While significant 1096

advancements have been made under four control condi- 1097

tions, it is crucial to extend this framework to encompass 1098

additional control conditions such as segmentations, pose, 1099

and others. (2) Generalization Bottleneck: The bottleneck 1100

of the proposed method is attributed to the utilization of the 1101

pre-trained Large Reconstruction Model (LRM). Although 1102

the proposed approach effectively aligns the controllable 1103

2D generator with the pre-trained triplane decoder, failures 1104

in the pre-trained LRM could result in the failure of our 1105

ControLRM. Therefore, enhancing the performance by em- 1106

ploying a more robust backbone can address this issue. 1107
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6 CONCLUSION1108

This paper introduces ControLRM, a novel controllable 3D1109

generation framework characterized by high speed and1110

superior generation quality. Our model offers support for1111

four different types of controls: Edge (Canny), Depth, Nor-1112

mal, and Sketch. The architecture comprises an end-to-end1113

feed-forward network that includes a 2D condition encoder1114

based on transformer or diffusion models and a 3D triplane1115

decoder leveraging a pre-trained LRM, where only the1116

cross-attention layers are active during training. Addition-1117

ally, we introduce an joint training pipeline encompassing1118

adversarial loss, clip loss, and reconstruction loss. To ensure1119

fair evaluation, we collect unseen evaluation samples from1120

three different datasets: G-OBJ, GSO, and ABO. The com-1121

prehensive quantitative and qualitative evaluation findings1122

demonstrate that our model surpasses existing state-of-the-1123

art methods and achieves generation speeds significantly1124

faster by an order of magnitude.1125
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