ControLRM: Fast and Controllable 3D Generation via Large Reconstruction Model

Hongbin Xu, Weitao Chen, Zhipeng Zhou, Feng Xiao, Baigui Sun, Liefeng Bo, Mike Zheng Shou, Wenxiong Kang,

Abstract—Despite recent advancements in 3D generation methods, achieving controllability still remains a challenging issue. Current approaches utilizing score-distillation sampling are hindered by laborious procedures that consume a significant amount of time. Furthermore, the process of first generating 2D representations and then mapping them to 3D lacks internal alignment between the two forms of representation. To address these challenges, we introduce ControLRM, an end-to-end feed-forward model designed for rapid and controllable 3D generation using a large reconstruction model (LRM). ControLRM comprises a 2D condition generator, a condition encoding transformer, and a triplane decoder transformer. Instead of training our model from scratch, we advocate for a joint training framework. In the condition training branch, we lock the triplane decoder and reuses the deep and robust encoding layers pretrained with millions of 3D data in LRM. In the image training branch, we unlock the triplane decoder to establish an implicit alignment between the 2D and 3D representations. To ensure unbiased evaluation, we curate evaluation samples from three distinct datasets (G-OBJ, GSO, ABO) rather than relying on cherry-picking manual generation. The comprehensive experiments conducted on quantitative and qualitative comparisons of 3D controllability and generation quality demonstrate the strong generalization capacity of our proposed approach. For access to our project page and code, please visit [our project page.](https://toughstonex.github.io/controlrm.github.io/)

✦

Index Terms—Large Reconstruction Model, Controllable 3D Generation, Neural Radiance Fields.

1 INTRODUCTION

² The potential of 3D content generation spans various sections such as digital games, virtual reality/augmented reality (VR/AR), and filmmaking. Fundamental techniques \mathbf{P} He potential of 3D content generation spans various sec-³ tors such as digital games, virtual reality/augmented in 3D content creation, such as text-to-3D and image-to-3D methods, offer substantial benefits by significantly reducing the need for laborious and costly manual work among professional 3D artists, thus enabling individuals without expertise to engage in the creation of 3D assets. Given the notable achievements in 2D content generation, exemplified by projects like DALL-E [\[1\]](#page-16-0) and StableDiffusion [\[2\]](#page-16-1), the community is increasingly focusing on advancements in 3D content generation. Recent progress in this field is credited to the advantageous characteristics of image diffusion mod- els [\[2\]](#page-16-1), [\[3\]](#page-16-2), differentiable 3D representations [\[4\]](#page-16-3), [\[5\]](#page-16-4), and 16 large reconstruction models [\[6\]](#page-16-5), [\[7\]](#page-16-6).

 An appealing area of interest for 3D content creation is **text-to-3D** generation. Some groundbreaking advancements [\[8\]](#page-16-7), [\[9\]](#page-16-8) in text-to-3D synthesis have introduced methods to enhance a neural radiance field (NeRF) [\[4\]](#page-16-3) through score distillation sampling (SDS) loss [\[8\]](#page-16-7) for 3D asset generation. Building upon the influential work of DreamFusion [\[8\]](#page-16-7), these SDS-based techniques aim to distill 3D information from pretrained large text-to-image generative models [\[1\]](#page-16-0), [\[2\]](#page-16-1). Various strategies seek to elevate generation quality by expanding to multiple optimization phases [\[9\]](#page-16-8), optimizing 3D representation and diffusion prior simultaneously [\[10\]](#page-16-9),

- *Z. Zhou is with INF Group, Shanghai.*
- *Mike Z. Shou is with National University of Singapore, Singapre.*

[\[11\]](#page-16-10), and adjusting score distillation algorithms [\[12\]](#page-16-11), [\[13\]](#page-16-12). ²⁸

Another crucial aspect of generating 3D content is the 29 process of **image-to-3D** synthesis. The traditional approach ³⁰ to this challenge relies on 3D reconstruction methods such 31 as Structure-from-Motion [\[15\]](#page-16-13) and Multi-view Stereo [\[16\]](#page-16-14), 32 [\[17\]](#page-16-15), [\[18\]](#page-16-16), [\[19\]](#page-16-17). These techniques involve identifying 3D 33 surface points by comparing similarities among point fea-
₃₄ tures extracted from source images, enabling the creation 35 of highly precise surface and texture maps. Despite signif- ³⁶ icant achievements in accurately reconstructing geometri-
37 cal details, these methods still struggle to reproduce de- 38 tailed view-dependent appearances. Consequently, recent 39 advancements have focused on developing implicit 3D rep- ⁴⁰ resentations like neural radiance fields [\[4\]](#page-16-3), [\[20\]](#page-16-18) and neural ⁴¹ implicit surfaces [\[21\]](#page-16-19), [\[22\]](#page-16-20). These novel approaches explore 42 volumetric representations that can be learned from dense 43 multi-view datasets without explicit feature matching, offer- ⁴⁴ ing more efficient and high-quality solutions [\[20\]](#page-16-18), [\[23\]](#page-16-21), [\[24\]](#page-16-22). ⁴⁵ Such efforts aim to move towards feed-forward models for 46 radiance fields reconstruction, relaxing the need for dense 47 views and per-scene optimization. Leveraging the capabil- ⁴⁸ ities and generalization power of large generative models 49 like diffusion models, recent studies [\[25\]](#page-16-23), [\[26\]](#page-16-24), [\[27\]](#page-16-25), [\[28\]](#page-16-26), ⁵⁰ [\[29\]](#page-16-27) have integrated pre-trained generative models with 51 multi-view information to generate new views from sparse sz inputs. Additionally, the emergence of Large Reconstruction 53 Models (LRM) [\[6\]](#page-16-5), [\[30\]](#page-16-28), [\[31\]](#page-16-29) has emphasized learning inter- 54 nal perspective relationships through a triplane transformer 55 [\[32\]](#page-16-30) and cross-attention mechanisms with 2D visual features $\frac{56}{60}$ from single-view input images. Recent enhancements [\[7\]](#page-16-6), ⁵⁷ [\[33\]](#page-16-31) of LRM have focused on replacing triplane-based vol-ume rendering with 3D Gaussian splatting [\[20\]](#page-16-18) and extend-

₅₉ ing single-view inputs to sparse multi-view configurations, ϵ

[•] *H. Xu, F. Xiao and W. Kang are with South China University of Technology, Guangzhou, China.*

[•] *W. Chen, B. Sun, and L. Bo are with Alibaba Group, Hangzhou, China.*

[•] *W. Kang is the corresponding author. (E-mail: auwxkang@scut.edu.cn)*

(a) Average time consumption of generating one Sample on a single V100-32G GPU

(b) Performance comparison among our ControLRM-T/D and other state-of-the-art methods

Fig. 1. Performance and efficiency comparison among different conditional 3D generation methods. Fig. (a) shows the average time consumption on a single V100-32G GPU of different methods. Our ControLRM-T and ControLRM-D can respectively achieve 60 and 18 times faster inference speed compared with the fastest baseline, MVControl [\[14\]](#page-16-32). Fig (b) shows the results of 15 evaluation metrics on the G-Objaverse test set, including 3D controllability metrics (introduced in Sec. [4.2.1\)](#page-8-0) and controllable 3D generation metrics (introduced in Sec. [4.3.1\)](#page-11-0).

⁶¹ facilitating comprehensive 3D object information.

 To address the question of whether the current prompt- based or image-based 3D generation methods are adequate to fulfill our requirements, we can delve further into the ne- cessities of 3D generation and categorize the issue into two distinct subproblems: **(1) Is 3D Generation Controllable?** In text-to-3D approaches, the prompt typically offers a basic description, requiring users to repeatedly input prompts to achieve the desired 3D output. Conversely, image-based methods necessitate acquiring the specific target image that meets the requirements before generating the desired 3D content. Therefore, integrating controllability into the 3D generation processes is crucial for ensuring user agency and customization. **(2) Is 3D Generation Efficient?** The optimization processes involved in text-to-3D and image- to-3D techniques are laborious and time-intensive, often demanding up to an hour to create a single 3D object based on input prompts or images. Such extensive compu- tational requirements pose a significant barrier, rendering the production of 3D content unfeasible for many users. 81 Consequently, addressing efficiency within the realm of 3D 82 generation stands as a critical challenge to overcome.

 To address the challenges identified, **this paper aims to develop an efficient and controllable 3D generation method**. An existing study named MVControl [\[14\]](#page-16-32) endeav- ors to tackle this issue by extending ControlNet [\[34\]](#page-16-33) to a multi-view diffusion model, MVDream [\[29\]](#page-16-27). The MVCon- trol system produces four multi-view images, which are then fed into a multi-view Gaussian reconstruction model, LGM [\[7\]](#page-16-6), to derive coarse 3D Gaussian representations. Subsequently, these coarse Gaussians undergo SDS opti- mization guided by a 2D diffusion model to refine the 93 3D Gaussian outputs. Despite demonstrating promising outcomes in 3D content generation, MVControl exhibits several limitations: **(1) Misalignment between 2D and 3D Representations**: In MVControl, the multi-view images generated by the 2D diffusion model are converted to 3D representations using the LGM reconstruction model. How- ever, the direct integration of these distinct models may lead to discrepancies between 2D and 3D representations, as the reconstruction model might struggle to generalize across the

generated images. **(2) Complex Multi-Stage Procedures In-** ¹⁰² **crease Time Consumption**: MVControl incorporates a two- ¹⁰³ stage approach: the initial stage involves the amalgamation 104 of 2D diffusion and 3D reconstruction models, while the ¹⁰⁵ subsequent stage encompasses the SDS-based optimization 106 process. These intricate multi-stage procedures contribute to 107 a cumbersome and time-intensive generation process. 108

These identified challenges prompt the following solu-
109 tions: (1) Resolving the misalignment between 2D and 3D $_{110}$ through **an end-to-end aligned model**; (2) Streamlining ¹¹¹ complex procedures with **a fast feed-forward model**. This ¹¹² paper introduces **ControLRM**, a feed-forward model de- ¹¹³ signed for controllable 3D generation founded on the Large $_{114}$ Reconstruction Model (LRM). The architecture consists of: 115 (1) A 2D condition generator with transformer or diffusion 116 backbone that accept text and 2D visual conditions as input; 117 (2) A 2D condition encoder that extract 2D latent features $\frac{1}{18}$ from the output feature of the 2D condition generator; 119 (3) A triplane decoder transformer that interacts with the 120 2D features via cross-attention and generate a triplane- ¹²¹ NeRF representation. Training directly with conditional inputs and ground truth multi-view images from scratch is 123 computationally demanding and challenging. Therefore, we ¹²⁴ propose a joint training framework leveraging the strong 125 priors of a pre-trained LRM model trained on extensive ¹²⁶ datasets. In the condition training stage, the condition 2D 127 generator and the cross-attention layer are activated, while 128 the parameters in the triplane decoder remain fixed. In the 125 image training phase, both the image encoder and the tri- ¹³⁰ plane decoder are activated to ensure the alignment between 131 2D latents and 3D triplane transformer. Rather than utilizing 132 the entire Objaverse [\[35\]](#page-16-34) and MVImgNet [\[36\]](#page-17-0) datasets like 133 LRM [\[6\]](#page-16-5), we opt for a smaller dataset, G-Objaverse [\[37\]](#page-17-1), 134 to train our ControLRM. To ensure unbiased evaluation, ¹³⁵ we curate evaluation samples from three distinct datasets 136 (G-OBJ, GSO, ABO) rather relying on manual generation. ¹³⁷ The quantitative and qualitative results on $3D$ controllability $\frac{1}{388}$ evaluation and generation quality comparison demonstrate 139 the superiority of our method.

In summary, our main contributions are as follows: ¹⁴¹

We present ControLRM, a novel framework tailored 142

 for controllable 3D generation based on single-view 2D condition and text input. The model undergoes evaluation across four distinct condition types (edge, depth, normal, scribble), showcasing its robust gen-eralization and diverse controllability features.

- ¹⁴⁸ We introduce an end-to-end feed-forward network ¹⁴⁹ architecture for controllable 3D generation. The end-¹⁵⁰ to-end paradigm serves as a natural bridge be-¹⁵¹ tween 2D latents and 3D triplanes, while the feed-¹⁵² forward network design guarantees rapid inference ¹⁵³ when compared to existing optimization-based ap-¹⁵⁴ proaches.
- ¹⁵⁵ We present an effective joint training scheme for ¹⁵⁶ training the controllable 3D generation model. This ¹⁵⁷ approach leverages the significant 3D reconstruction ¹⁵⁸ capabilities within pretrained LRM to enhance our ¹⁵⁹ controllable 3D generation task.
- ¹⁶⁰ Through comprehensive experiments conducted on ¹⁶¹ G-OBJ, GSO, and ABO datasets, we demonstrate that ¹⁶² our ControLRM significantly surpasses the perfor-¹⁶³ mance of current state-of-the-art (SOTA) methods in ¹⁶⁴ 3D controllability, generation quality, and inference ¹⁶⁵ speed (as shown in Fig. [1\)](#page-1-0).

¹⁶⁶ **2 RELATED WORK**

¹⁶⁷ **2.1 Optimization-based 3D Generation**

 Building on the accomplishments of text-to-image diffusion models [\[2\]](#page-16-1), [\[3\]](#page-16-2), optimization-based approaches present a practical alternative by circumventing the necessity for ex- tensive text-3D datasets. DreamFusion [\[8\]](#page-16-7) is a seminal work that introduced the SDS loss to optimize a neural field using diffusion priors for 3D asset generation. Addition- ally, Score Jacobian Chaining [\[38\]](#page-17-2) is a study that elevates pretrained 2D diffusion models for 3D creation, utilizing the chain rule and the gradients learned from a diffusion 177 model to backpropagate scores through the Jacobian of a differentiable renderer. However, these optimization-based techniques commonly encounter a shared challenge known as the Janus problem. MVDream [\[29\]](#page-16-27) tackles this issue by refining a multi-view diffusion model, which replaces self-attention with multi-view attention in Unet to produce consistent multi-view images. Introducing the concept of 3D Gaussian splatting [\[20\]](#page-16-18), DreamGaussian [\[39\]](#page-17-3) optimizes 3D Gaussians using the SDS loss. Nonetheless, it grapples with the Janus problem stemming from the uncertainties of 2D SDS supervision and rapid convergence. Addressing this, GSGEN [\[40\]](#page-17-4) and GaussianDreamer [\[41\]](#page-17-5) incorporate a coarse 3D prior to generate more cohesive geometries. Furthermore, GSGEN proposes the use of the 3D SDS loss from Point-E [\[42\]](#page-17-6) for joint optimization in the geometry phase. Despite SDS's benefits in terms of data requirements, it necessitates optimization for each new 3D object and demands hours to reach convergence.

¹⁹⁵ **2.2 Feed-forward 3D Generation**

 The extensive 3D datasets [\[35\]](#page-16-34), [\[36\]](#page-17-0) have unlocked new possibilities for training feed-forward models to generate 3D assets directly from text, single- or multi-view images. (1) **3D generation from single-view**: LRM [\[6\]](#page-16-5) first scales up

the triplane transformer on a large dataset to predict a tri-
200 plane neural radiance field (NeRF) from single-view images, ²⁰¹ showing high generalization ability. TripoSR [\[30\]](#page-16-28) integrates 202 significant improvements in data processing, model design, 203 and training techniques, enhancing the efficiency and ef- 204 fectiveness. (2) **3D generation from multi-view**: Methods ²⁰⁵ based on multi-view are extensions designed to enhance the 206 generation quality of single-view methods. Typically, multi- ²⁰⁷ view images of an object are initially synthesized from a sin-

208 gle image using a multi-view diffusion model [\[29\]](#page-16-27). Similar ass to single-view approaches, these methods can be broadly 210 categorized as either diffusion-based or transformer-based ²¹¹ architectures. Examples of diffusion-based architectures in- ²¹² clude SyncDreamer [\[27\]](#page-16-25) and Wonder3D [\[28\]](#page-16-26). SyncDreamer 213 necessitates dense views for 3D reconstruction, while Won- ²¹⁴ der3D employs a multiview cross-domain attention mecha- ²¹⁵ nism to process relatively sparse views. Transformer-based 216 architectures like Instant3D [\[43\]](#page-17-7) encodes multi-view images ²¹⁷ by a image encoder and concatenate the encoded results 218 into a set of tokens for the image-to-triplane decoder. Ad- 219 ditionally, LGM [\[7\]](#page-16-6), GRM [\[44\]](#page-17-8) and GS-LRM [\[33\]](#page-16-31) enhance 220 the generation quality using high-resolution features and 221 increasing the number of surrounding views. (3) **3D gener-** ²²² **ation from text:** Point-E [\[42\]](#page-17-6) and Shap-E [\[45\]](#page-17-9) utilize complex 223 prompts to generate point clouds and neural radiance fields 224 respectively. Representing 3D data as volumes, 3DTopia ²²⁵ [\[46\]](#page-17-10) and VolumeDiffusion [\[47\]](#page-17-11) train diffusion models by 226 fitting volumetric modules. ATT3D [\[48\]](#page-17-12) employs a feed- ²²⁷ forward transformer to generate the 3D contents and train 228 the model with amortized training via pretrained diffusion 229 model. Latte3D [\[49\]](#page-17-13) extends the amortization architecture 230 of ATT3D, significantly improving the efficiency and gener-
231 ation quality. 232

2.3 Controllable 3D Generation 233

Despite the rapid advancements in 3D generation tech- ²³⁴ niques discussed earlier, achieving controllability in 3D gen-
235 eration remains a significant challenge. The current state-
 of-the-art controllable 3D generation method is MVControl ²³⁷ [\[14\]](#page-16-32). This method incorporates a trainable control network 238 that interacts with the base multi-view diffusion model 239 to facilitate controllable multi-view image generation. In 240 the coarse stage, the MVControl model produces four-view 241 images, which are subsequently input into the 3D recon- ²⁴² struction model LGM [\[7\]](#page-16-6). The generated coarse Gaussians 243 are then utilized to initialize the SDS-based training in the ²⁴⁴ refinement stage. However, there are still some limitations ₂₄₅ in MVControl: (1) The direct integration of distinct models ²⁴⁶ may lead to discrepancies between 2D and 3D represen- ²⁴⁷ tations, as the reconstruction model may not generalize ²⁴⁸ well on the generated multi-view images. (2) The complex 249 procedures for generating a single 3D content may increase 250 the time consumption. In response to these limitations, we 251 propose ControLRM, an end-to-end feed-forward control- ²⁵² lable 3D generation model which also has fast inference 253 speed. ²⁵⁴

3 METHOD ²⁵⁵

In this section, we present the ControLRM framework as de-picted in Fig. [2.](#page-3-0) We commence by outlining the fundamen-

Fig. 2. The overall framework of **ControLRM**, a feed-forward controllable 3D generation model.

 tals of LRM in Sec. [3.1.](#page-3-1) Next, we delve into a comprehensive examination of the LRM framework from the perspective of the Variational Auto-encoder (VAE) in Sec. [3.2.](#page-4-0) Building on the insights from Sec. [3.2,](#page-4-0) we elucidate the process of enhancing the LRM to our proposed ControLRM in Sec. [3.3.](#page-4-1) Subsequently, we elaborate on the components of each module within ControLRM and expound on the training objectives in Sec. [3.4.](#page-5-0)

²⁶⁶ **3.1 Preliminary of LRM**

 Large Reconstruction Model (LRM) is an advanced method that efficiently generates a 3D object from a single 2D image input. The LRM primarily consists of the following components:

 Image Encoder: Given an RGB image as input, we utilize a pre-trained visual transformer (ViT) [\[50\]](#page-17-14) to encode the ₂₇₃ image into patch-wise feature tokens denoted by $\{h_i | h_i \in$ \mathbb{R}^{D_e} _i^N_i, where *i* represents the index of the image patch, N_p is the total number of image patches, and D_e signifies the dimension of the feature tokens. Specifically, the pre- trained self-supervised model DINO (Caron et al., 2021) is used. The ViT incorporates a predefined [CLS] token h_{cls} ∈ \mathbb{R}^{D_e} , which is then concatenated with the feature 280 sequence $\{h_i\}_{i=1}^{N_p}$ to form the output.

Camera Features: The camera feature $c \in \mathbb{R}^{20}$ is comprised ²⁸² of the flattened vectors of camera extrinsic and intrinsic 283 parameters. The 4-by-4 extrinsic matrix E is flattened to ²⁸⁴ a 16-dimensional vector $E_{1\times 16}$. The intrinsic parameters, ²⁸⁵ including the camera focal length and principal points, are 286 combined as a 4-dimensional vector: $[\text{foc}_x, \text{foc}_y, \text{pp}_x, \text{pp}_y].$ ²⁸⁷ To embed the camera feature, a multi-layer perceptron 288 (MLP) is employed to transform the camera feature c into 289 a 1024-dimensional camera embedding \tilde{c} .

$$
\tilde{c} = \text{MLP}_{\text{cam}}(c) = \text{MLP}_{\text{cam}}([E_{1 \times 16}, \text{foc}_x, \text{foc}_y, \text{pp}_x, \text{pp}_y]) \tag{1}
$$

 Modulation with Camera Features: The camera modulation incorporates an adaptive layer normalization (adaLN) [\[51\]](#page-17-15) to adjust image features using denoising iterations and class 293 designations. When provided with the camera feature \tilde{c} as input, a multi-layer perceptron (MLP) predicts the scaling ²⁹⁴ factor γ and the shifting factor β : 295

$$
\gamma, \beta = \text{MLP}_{\text{mod}}(\tilde{c}) \tag{2}
$$

Subsequently, the modulation function will process the 296 sequence of vectors in the transformer $\{f_i\}$ as follows: 297

$$
ModLN(f_j) = LN(f_j) \cdot (1 + \gamma) + \beta \tag{3}
$$

where LN is the layer Normalization [\[52\]](#page-17-16).

Transformer Layers: Each transformer layer consists of a 299 cross-attention sub-layer, a self-attention sub-layer, and a 300 multi-layer perceptron sub-layer (MLP), where the input 301 tokens for each sub-layer are modulated by the camera 302 features. The feature sequence f^{in} , serving as the input to the sos transformer layers, can also be viewed as triplane hidden 304 features. As illustrated in Fig. [2](#page-3-0) (b), the cross-attention ³⁰⁵ module uses the feature sequence f_{in} as the query and the $\frac{306}{200}$ image features $\{h_{\text{cls}}, h_i\}_{i=1}^{N_p}$ as the key/value pairs.

$$
f_j^{\text{cross-i}} = \text{Cross-I}(\text{ModLN}(f_j^{\text{in}}); \{h_{\text{cls}}, h_i\}_{i=1}^{N_p}) + f_j^{\text{in}} \tag{4}
$$

where Cross-I represents the cross-attention between the 308 image features and the triplane features. 308

Subsequent to the original transformer [\[53\]](#page-17-17), the self- ³¹⁰ attention sub-layer denoted as $\text{Self}(\cdot)$ and the multi-layer $\frac{311}{21}$ perceptron sub-layer labeled as $MLP(\cdot)$ handle the input 312 feature sequence in the ensuing manner: 313

$$
f_j^{\text{self}} = \text{Self}(\text{ModLN}(f_j^{\text{cross-i}}); \text{ModLN}(f_{j'}^{\text{cross-i}})) + f_j^{\text{cross-i}}
$$
(5)

$$
f_j^{\text{out}} = \text{MLP}(\text{ModLN}(f_j^{\text{self}})) + f_j^{\text{self}} \tag{6}
$$

where f_j^{out} represents the triplane feature output. This 315 final output undergoes upsampling via a trainable de- 316 convolution layer and is subsequently reshaped into the 317 final triplane representation $TP \in \mathbb{R}^{3 \times 64 \times 64 \times \tilde{D}_t}$, where D_t and signifies the dimension of the triplane.

Triplane NeRF: The triplane TP comprises three axis- 320 aligned feature planes: $\text{TP}_{xy}/\text{TP}_{yz}/\text{TP}_{xz}$ $\in \ \mathbb{R}^{64 \times 64 \times D_t}$. ³²¹ Given any 3D point $p = [p_x, p_y, p_z]^T$ within the NeRF object 322 bounding box $[-1, 1]^3$, the point's feature can be extracted 323 from the triplane TP using bilinear sampling. 324

$$
TP_p = \text{Concat}(TP_{xy}[p_x, p_y], TP_{yz}[p_y, p_z], TP_{xz}[p_x, p_z]) \tag{7}
$$

314

 325 where Concat(\cdot) represents the concatenation function, and 326 $\mathbb{TP}_p \in \mathbb{R}^{3 \cdot D_t}$ denotes the sampled feature corresponding to 327 point p .

³²⁸ **Training Objectives**: During training, V views are ran-³²⁹ domly selected from the dataset. One view is chosen as the 330 reference view and passed to the LRM, while the other $V - 1$ ³³¹ views serve as auxiliary training views. Let the rendered 332 views of the LRM be denoted as \hat{x} , and the ground truth 333 views as x^{GT} . Particularly, for each input image x , we aim ³³⁴ to minimize:

$$
L_{\text{recon}}(x) = \frac{1}{V} \sum_{v=0}^{V} (L_{\text{MSE}}(\hat{x}_v, x_v^{\text{GT}}) + \lambda L_{\text{LPIPS}}(\hat{x}_v, x_v^{\text{GT}}))
$$
(8)

 335 where L_{MSE} represents the normalized pixelwise L2 loss, 336 L_{LPIPS} denotes the perceptual image similarity loss [\[54\]](#page-17-18), and 337 λ is a customizable weight used to balance these losses.

³³⁸ **3.2 Understanding LRM in a Perspective of VAE**

³³⁹ From the perspective of Variational Autoencoder (VAE) [\[55\]](#page-17-19), ³⁴⁰ the LRM can be viewed as an intricate architecture that ³⁴¹ encompasses certain fundamental principles akin to VAEs.

 Similar to the encoder in a VAE, the image encoder of LRM processes an input image, transforming it into a series of feature tokens. These tokens serve as the encoded latent representation of the input image, mirroring the latent space in a VAE. The decoding component of LRM functions analogously to the decoder in a VAE by reconstructing images from the latent space. Specifically, LRM maps the latent trilinear representation to a 3D object within NeRF and subsequently generates images with new perspectives, akin to the generation or decoding process within a VAE framework. LRM employs a reconstruction loss to reduce the dissimilarity between the input image and the rendered images altered based on camera parameters. In the subse- quent section, we will offer a theoretical overview of LRM, including a form of Evidence Lower Bound (ELBO).

 357 Given the 3D representation x_{3d} , a set of projected 358 2D images ${x_i}_{i=1}^{N_V}$ with corresponding camera parameters 359 ${T_i}_{i=1}^{N_V}$, where N_V denotes the number of viewpoints. It ³⁶⁰ is assumed that the ground-truth distribution of the 3D 361 representation is represented by the density $p(\mathbf{x}_{3d})$. In LRM, this 3D representation is characterized by a triplane Neural ³⁶³ Radiance Field (NeRF). Under this assumption, one can ³⁶⁴ write:

$$
p(\mathbf{x}_{3d}) = \int_{z} p(\mathbf{x}_{3d}, z) dz = \int_{z} p(\mathbf{x}_{3d}|z) p(z) dz \tag{9}
$$

z represents the latent variable associated with x_{3d} , fol-366 lowing a simple distribution $p(z)$ referred to as the prior ³⁶⁷ distribution. The primary objective of the VAE is to ac-368 quire a robust approximation of $p(\mathbf{x}_{3d}|z)$ based on the ³⁶⁹ provided data. This approximated distribution is denoted 370 by $p_{\theta}(\mathbf{x}_{3d}|z)$, where θ symbolizes the learnable parameters. 371 Subsequently, we can compute the log likelihood $\log p_{\theta}(\mathbf{x}_{3d})$

in the following manner: 372

$$
\log p_{\theta}(\mathbf{x}_{3d})
$$
\n
$$
= \log \int_{T} p_{\theta}(\mathbf{x}_{3d}|T)p(T)dT \geq \int_{T} \log p_{\theta}(\mathbf{x}_{3d}|T)p(T)dT
$$
\n
$$
\approx \frac{1}{N_V} \sum_{i=1}^{N_V} \log p_{\theta}(\mathbf{x}_{3d}|T_i) = \frac{1}{N_V} \sum_{i=1}^{N_V} \log \int_{z} p_{\theta}(\mathbf{x}_{3d}, z|T_i)dz
$$
\n
$$
= \frac{1}{N_V} \sum_{i=1}^{N_V} \log \int_{z} \frac{p_{\theta}(\mathbf{x}_{3d}, z|T_i)q_{\varphi}(z|x_i, T_i)}{q_{\varphi}(z|x_i, T_i)}dz
$$
\n
$$
\geq \frac{1}{N_V} \sum_{i=1}^{N_V} \mathbb{E}_{q_{\varphi}} \log \frac{p_{\theta}(\mathbf{x}_{3d}, z|T_i)}{q_{\varphi}(z|x_i, T_i)}
$$
\n(10)

where $p_{\theta}(\mathbf{x}_{3d}|T_i)$ indicates that the 3D representation \mathbf{x}_{3d} is \cdots conditioned on the camera parameters T_i corresponding to viewpoint *i*. Given that our x_{3d} embodies a triplane NeRF, $\frac{375}{6}$ when conditioned on T_i , it serves as a representation of the rendered image from viewpoint *i*. The final row in Eq. [10](#page-4-2) σ denotes the Evidence Lower Bound (ELBO). By isolating the $\frac{378}{276}$ inner term of ELBO at viewpoint i , we obtain:

$$
\mathbb{E}_{q_{\varphi}} \log \frac{p_{\theta}(\mathbf{x}_{3d}, z | T_i)}{q_{\varphi}(z | x_i, T_i)}
$$
\n
$$
= \mathbb{E}_{q_{\varphi}} \log \frac{p_{\theta}(\mathbf{x}_{3d} | z, T_i) p_{\theta}(z)}{q_{\varphi}(z | x_i, T_i)}
$$
\n
$$
= \mathbb{E}_{q_{\varphi}} \log p_{\theta}(\mathbf{x}_{3d} | z, T_i) - \text{KL}(q_{\varphi}(z | x_i, T_i) || p_{\theta}(z))
$$
\n
$$
= \mathbb{E}_{q_{\varphi}} \log \int_{T} p_{\theta}(\mathbf{x}_{3d} | z, T_i, T) p(T) dT - \text{KL}(q_{\varphi}(z | x_i, T_i) || p_{\theta}(z))
$$
\n
$$
\geq \mathbb{E}_{q_{\varphi}} \int_{T} \log p_{\theta}(\mathbf{x}_{3d} | z, T_i, T) p(T) dT - \text{KL}(q_{\varphi}(z | x_i, T_i) || p_{\theta}(z))
$$
\n
$$
\approx \frac{1}{M} \sum_{j=1}^{M} \mathbb{E}_{q_{\varphi}} \log p_{\theta}(\mathbf{x}_{3d} | z, T_i, T_j) - \text{KL}(q_{\varphi}(z | x_i, T_i) || p_{\theta}(z))
$$
\n(11)

Note that the extrinsic matrix of the input reference 380 view is normalized to an identity matrix, while the extrinsic ³⁸¹ matrices of the other views are adjusted to the relative 382 transformation matrix with respect to the normalized refer- ³⁸³ ence view. The intrinsic parameters remain constant across 384 all views. Consequently, the input camera parameter T_i is ass consistent and fixed within the LRM, thereby allowing for 386 its exclusion from the formulas: $\frac{387}{200}$

$$
\mathbb{E}_{q_{\varphi}} \log \frac{p_{\theta}(\mathbf{x}_{3d}, z | T_i)}{q_{\varphi}(z | x_i, T_i)}
$$
\n
$$
\geq \frac{1}{M} \sum_{j=1}^{M} \mathbb{E}_{q_{\varphi}} \log p_{\theta}(\mathbf{x}_{3d} | z, T_j) - \text{KL}(q_{\varphi}(z | x_i) || p_{\theta}(z))
$$
\n(12)

where $p_{\theta}(x_{3d}|z, T_j)$ represents the triplane decoder (de- 388 picted as purple modules in Fig. [2\)](#page-3-0), while $q_{\phi}(z|x_i)$ denotes 389 the image encoder (illustrated as orange modules in Fig. [2\)](#page-3-0). 390

3.3 Upgrading LRM to ControLRM 391

Eq. [10,](#page-4-2) [11,](#page-4-3) and [12](#page-4-4) elaborate on the extension of LRM, 392 interpreting it as a specialized variant of the Variational 393 Autoencoder (VAE). By analogy, these expressions can be 394 further expanded to cater to the objective of controllable 395 3D generation. Consider e_i as indicative of the input 2D 396 visual condition on view i and the associated textual prompt \Box 397 concerning the 3D object, the ELBO can be formulated as: $\frac{398}{2}$

$$
\log p_{\theta}(\mathbf{x}_{3d}) = \log \int_{T} p_{\theta}(\mathbf{x}_{3d}|T)p(T)dT \ge \int_{T} \log p_{\theta}(\mathbf{x}_{3d}|T)p(T)dT
$$
\n
$$
\approx \frac{1}{N_V} \sum_{i=1}^{N_V} \log p_{\theta}(\mathbf{x}_{3d}|T_i) = \frac{1}{N_V} \sum_{i=1}^{N_V} \log \int_{z} p_{\theta}(\mathbf{x}_{3d}, z|T_i)dz
$$
\n
$$
= \frac{1}{N_V} \sum_{i=1}^{N_V} \log \int_{z} \frac{p_{\theta}(\mathbf{x}_{3d}, z|T_i)q_{\varphi'}(z|e_i, T_i)}{q_{\varphi'}(z|e_i, T_i)}dz
$$
\n
$$
= \frac{1}{N_V} \sum_{i=1}^{N_V} \log \mathbb{E}_{q_{\varphi'}} [\frac{p_{\theta}(\mathbf{x}_{3d}, z|T_i)}{q_{\varphi'}(z|e_i, T_i)}] \ge \frac{1}{N_V} \sum_{i=1}^{N_V} \mathbb{E}_{q_{\varphi'}} \log \frac{p_{\theta}(\mathbf{x}_{3d}, z|T_i)}{q_{\varphi'}(z|e_i, T_i)}
$$
\n(13)

 399 By isolating the inner term of ELBO at viewpoint i, we ⁴⁰⁰ can get:

$$
\mathbb{E}_{q_{\varphi'}(z|e_i,T_i)} \log \frac{p_{\theta}(\mathbf{x}_{3d}, z|T_i)}{q_{\varphi'}(z|e_i,T_i)} \n= \mathbb{E}_{q_{\varphi'}(z|e_i,T_i)} \log \frac{p_{\theta}(\mathbf{x}_{3d}|z,T_i)p_{\theta}(z)}{q_{\varphi'}(z|e_i,T_i)} \n\geq \frac{1}{M} \sum_{j=1}^{M} \mathbb{E}_{q_{\varphi'}(z|e_i,T_i)} \log p_{\theta}(\mathbf{x}_{3d}|z,T_i,T_j) - \text{KL}(q_{\varphi'}(z|e_i,T_i)||p_{\theta}(z))
$$
\n(14)

⁴⁰¹ Due to the normalization operation towards reference ⁴⁰² viewe in the extrinsic matrix, T_i is a fixed identity matrix, ⁴⁰³ which can be further simplified in Eq. [14.](#page-5-1)

$$
\mathbb{E}_{q_{\varphi'}(z|e_i, T_i)} \log \frac{p_{\theta}(\mathbf{x}_{3d}, z|T_i)}{q_{\varphi'}(z|e_i, T_i)}\n\n\geq \frac{1}{M} \sum_{j=1}^{M} \mathbb{E}_{q_{\varphi'}(z|e_i)} \log p_{\theta}(\mathbf{x}_{3d}|z, T_j) - \text{KL}(q_{\varphi'}(z|e_i)||p_{\theta}(z))\n\n(15)
$$

404 where $p_{\theta}(x_{3d}|z,T_i)$ represents the same triplane decoder as Eq. [12](#page-4-4) (depicted as purple modules in Fig. [2\)](#page-3-0), while $q_{\varphi}(z|e_i)$ denotes the condition encoder part (illustrated as red modules in Fig. [2\)](#page-3-0).

 Eq. [15](#page-5-2) represents the ELBO of our ControLRM. However, the optimization of Eq. [15](#page-5-2) might be much more difficult than the optimization of Eq. [12](#page-4-4) in LRM, given the relaxation of input from detailed images to coarse conditions (visual condition maps and text descriptions). Typically, achiev- ing convergence of ControLRM necessitates an even larger scale of data compared to what was utilized in training LRM (Objaverse [\[35\]](#page-16-34) and MVImgNet [\[36\]](#page-17-0)). Consequently, direct optimization of Eq. [\(15\)](#page-5-2) is not the optimal solution, 417 considering the computational cost and convergence issues encountered during training.

 To address this issue, we have to explore an alterna- tive training approach for our ControLRM model. Remark- ably, it is observed that the triplane decoder denoted by $p_{\theta}(x_{3d}|z,T_i)$ is common to both Eq. [12](#page-4-4) and Eq. [15.](#page-5-2) This im- plies that leveraging the convergence of the triplane decoder $p_{\theta}(x_{3d}|z,T_i)$ and the image encoder $q_{\phi}(z|x_i)$ under the guidance of Eq. [\(12\)](#page-4-4) can enhance the training process in Eq. [15.](#page-5-2) If $p_{\theta}(x_{3d}|z,T_i)$ is kept constant in Eq. [15,](#page-5-2) the focus shifts 427 to maximizing the remaining term $-KL(q_{\varphi}(z|e_i)||p_{\theta}(z))$, 428 aligning the condition encoder $q_{\varphi}(z|e_i)$ with the latent space z. Consequently, the need for a vast amount of paired data (input condition and 3D object) can be significantly reduced, and the convergence can also be enhanced by leveraging the strong prior knowledge embedded in pre-trained LRM models.

 Following these discussions, we propose a joint train- ing paradigm which comprises two branches: the Image Training Branch and the Condition Training Branch. The 437 former encompasses a 2D image encoder $(q_{\phi}(z|x_i))$ in Eq. [12\)](#page-4-4) and a 3D triplane decoder $(p_{\theta}(x_{3d}|z,T_j))$ in Eq. [12\)](#page-4-4). The 439 latter comprises a 2D condition encoder $(q_{\varphi}(z|e_i))$ in Eq. [15\)](#page-5-2) and utilizes the same 3D triplane decoder $(p_{\theta}(x_{3d}|z, T_i))$ in Eq. [15.](#page-5-2) It is noteworthy that the cross-attention lay-442 ers interacting with $q_{\phi}(z|x_i)$ and $q_{\phi}(z|e_i)$ are denoted as Cross-I and Cross-C, respectively. Illustrated in Figure [2,](#page-3-0) the Image Training Branch optimizes the ELBO in Eq. [12,](#page-4-4) 445 aiming to refine the triplane decoder $p_{\theta}(x_{3d}|z, T_i)$ and 2D

image encoder $q_{\phi}(z|x_i)$ for optimal performance. On the 446 other hand, the Condition Training Branch retains the fixed ⁴⁴⁷ parameters of the triplane decoder $p_{\theta}(x_{3d}|z, T_i)$ and focuses 448 on optimizing the ELBO in Eq. [15.](#page-5-2) This process naturally 449 aligns the distributions of the latent spaces in Eq. [12](#page-4-4) and Eq. 450 [15](#page-5-2) using the shared 3D Triplane Transformer.

3.4 ControLRM 452

In this section, we delve into the specific modules of 453 ControLRM. The design of the conditional generator was ⁴⁵⁴ detailed in Fig. [2](#page-3-0) in Section [3.4.1.](#page-5-3) Depending on the cho- ⁴⁵⁵ sen backbone for the conditional generator, ControLRM ⁴⁵⁶ manifests in two variants: 1) ControLRM-T featuring a 457 transformer-based conditional generator (Section [3.4.2\)](#page-5-4); 2) ⁴⁵⁸ ControLRM-D integrating a diffusion-based conditional 459 generator (Section [3.4.3\)](#page-6-0). Subsequently, we present the 460 condition-to-triplane transformer decoder in Section [3.4.6.](#page-6-1) ⁴⁶¹ The training objectives encompassing adversarial loss, clip 462 loss, and rendering loss are expounded upon in Section 463 $3.4.7.$ 464

3.4.1 Design of Conditional Generator 465

As depicted in Fig. [2,](#page-3-0) the conditional generator utilizes the 466 2D condition and the text embedding of CLIP [\[56\]](#page-17-20) as input 467 to produce the 2D latents required for subsequent proce- 468 dures. A naive design of this generator is a transformer-
469 based backbone with cross-attention mechanism between 470 the feature sequence extracted from condition image and ⁴⁷¹ the text feature. However, this design with only the cross- 472 attention mechanism fails to generate a regular results but 473 yielding meaningless results in the experiments. A similar 474 issue was observed in [\[57\]](#page-17-21), indicating that the main reason 475 for this optimization failure stems from the notable disparity 476 between the 2D renderings and the ground truth images. As 477 noted by [\[58\]](#page-17-22), the optimization gradient becomes unreliable 478 when the generated distribution and the target distribution 475 are disjoint. In contrast, the backward gradients to the 2D 480 latents in our model must traverse a series of modules, ⁴⁸¹ including the condition encoder, triplane transformer, and 482 NeRF modules. This complexity of pathways may signif- 483 icantly impede the optimization process, consequently re- ⁴⁸⁴ sulting in unexpected failures. A straightforward remedy 485 proposed in [\[57\]](#page-17-21) involves the incorporation of randomness 486 (e.g., Gaussian noise) into the network architecture. By in- ⁴⁸⁷ creasing the overlap between the rendered distribution and 488 the target distribution, the gradients during training become $\frac{488}{9}$ more meaningful, promoting convergence. In summary, the 490 key considerations for designing the condition generator ⁴⁹¹ in ControLRM are: 1) Incorporation of randomness for im- ⁴⁹² proved training outcomes. 2) Emphasis on the efficiency of 493 the generator for fast inference speed.

3.4.2 Transformer-based Conditional Generator ⁴⁹⁵

For **ControLRM-T** model, we have devised a lightweight 496 transformer-based generator, illustrated in Figure [3](#page-6-3) (a). ⁴⁹⁷ Building upon the preceding discussion, we introduce ran- 498 domness through a style injection module. Drawing inspi- ⁴⁹⁹ ration from the original style injection concept in StyleGAN 500 [\[59\]](#page-17-23), where style features and random noise are integrated 501 into the generator via Adaptive Instance Normalization 502

Text 2D Latents (b) Structure of Diffusion-based 2D Generator in ControLRM-D

Fig. 3. The architecture of the 2D conditional generator in ControLRM. (a) shows the transformer-based generator in **ControLRM-T**, and (b) shows the diffusion-based generator in **ControLRM-D**.

 (AdaIN), we adapt this approach by treating the text em- bedding as the style feature. This text embedding is concate- nated with random Gaussian noise and passed through a 3- layer MLP within our style injection module. The resulting feature vector is then combined with the output of each convolution layer to incorporate the text feature. In Figure [3](#page-6-3) (a), the convolution blocks and transformer blocks are stacked together, with residual connections applied to the convolution blocks in a U-Net configuration.

⁵¹² *3.4.3 Diffusion-based Conditional Generator*

 For the **ControLRM-D** model, we have intricately inte- grated LoRA adapters [\[60\]](#page-17-24) into the original latent diffusion model, incorporating small trainable weights. Leveraging the inherent randomness within the diffusion model, and aided by the pre-trained weights obtained from large-scale datasets, we aim to address the discrepancy issue high- lighted in Section [3.4.4.](#page-6-4) In addressing efficiency concerns, we opt for the fast one-step diffusion model [\[61\]](#page-17-25) as the foun- dational framework. Specifically, we initialize the Diffusion- based generator with the pre-trained weights of SD-Turbo [\[62\]](#page-17-26). To form the 2D latents for subsequent procedures, we concatenate the outputs of the last three layers of the decoder depicted in Figure [3](#page-6-3) (b).

⁵²⁶ *3.4.4 Condition Encoder*

with a cross

⁵²⁷ In Figure [2](#page-3-0) (a), the 2D latents are firstly interpolated to ⁵²⁸ match the resolution of the input condition image, and ⁵²⁹ then divided into the feature sequence $\{g_i|g_i \in \mathbb{R}^{D_e}\}_i^{N_p}$. 530 Similar to the feature sequence $\{h_i\}_i^{N_p}$ extracted from the ⁵³¹ input image discussed in Sec. **??**, D^e denotes the feature 532 dimension, while N_p corresponds to the number of patches. Within the condition encoder, the feature sequence ${g_i}_i^{N_p}$ 533 ⁵³⁴ is passed through a sequence of transformer layers, each ⁵³⁵ comprising a self-attention sub-layer and an MLP sub-layer.

$$
g_i^{\text{self}} = \text{Self}(g_i; g_i) + g_i \tag{16}
$$

$$
g_i^{\text{out}} = \text{MLP}(g_i^{\text{self}}) + g_i^{\text{self}} \tag{17}
$$

where g_i^{out} is the output feature.

To integrate the random sampling process, the output 538 g_i^{out} of the final transformer layer is fed to another MLP to \sim 539 regress the mean and variance results: 540

$$
\mu_{g_i}, \sigma_{g_i} = \text{MLP}(g_i^{\text{out}})
$$
\n(18)

where μ_g is the mean feature and σ_g represents the 541 variance. Throughout training, the output feature sequence 542 $\{\tilde{g}_i\}_{i}^{N_p}$ is is stochastically sampled from a Gaussian distribution, where $\tilde{g}_i \sim \mathcal{N}(\mu_{g_i}, \sigma_{g_i}^2)$ $\Big)$. 544

3.4.5 Auxiliary Decoder 545

To boost the performance, we further introduce an auxiliary 546 decoder for the 2D latents to enhance the training process. 547 The generated 2D latents from the conditional generator ⁵⁴⁸ (refer to Sections [3.4.2](#page-5-4) and [3.4.3\)](#page-6-0) are passed through a ⁵⁴⁹ lightweight three-layer convolutional neural network. The 550 resulting image x_{aux} is combined with the 2D renderings 551 to compute the loss function for the generated images. The 552 inclusion of the auxiliary decoder offers direct guidance to 553 the 2D generator, aiding in overall network convergence. 554

3.4.6 Triplane Transformer Decoder 555

The condition-to-triplane decoder receives the condition fea-

₅₅₆ ture sequence $\left\{ \tilde{g}_i \right\}_{i}^{\tilde{N}_p}$ and the triplane feature sequence f^{in} . ⁵⁵⁷ Analogous to the image-to-triplane decoder discussed in 558 Sec. [3.1,](#page-3-1) each transformer layer consists of a cross-attention 559 sub-layer, a self-attention sub-layer, and an MLP layer. The s₆₀ input tokens for each sub-layer are influenced by the camera 561 features \tilde{c} . The operation of each transformer layer can be \sim 562 described as follows: 563

$$
f_j^{\text{cross-c}} = \text{Cross-C}(\text{ModLN}(f_j^{\text{in}}); \{\tilde{g}_i\}_{i}^{N_p}) + f_j^{\text{in}} \tag{19}
$$

$$
f_j^{\text{self}} = \text{Self}(\text{ModLN}(f_j^{\text{cross-c}}); \text{ModLN}(f_j^{\text{cross-c}})) + f_j^{\text{cross-c}} \quad (20)
$$

$$
f_j^{\text{out}} = \text{MLP}(\text{ModLN}(f_j^{\text{self}})) + f_j^{\text{self}} \tag{21}
$$

3.4.7 Training Objectives **566**

In Fig. [2,](#page-3-0) the training objectives consist of three components: 567 adversarial loss, CLIP loss, and rendering loss. For each 568 sample, we designate one reference view and randomly 569 select $V - 1$ side views. Denoting the rendered images of 570 ControLRM as \hat{x} and the ground truth images as x^{GT} , the π index of the reference view is designated as 0 . The resultant 572 image from the auxiliary decoder (refer to Sec. [3.4.5\)](#page-6-5) is 573 denoted as x_{aux} . The calculation of the loss can be expressed 574 α s follows: 575

Adversarial Loss: To incentivize the alignment of the gener-
576 ated images with the corresponding ground truth domains, 577 we apply an adversarial loss $[63]$. In line with the approach 578 advocated by Vision-Aided GAN [\[64\]](#page-17-28), the discriminator 579 utilizes the CLIP model as its foundation. The adversarial ssc \cos is defined as follows: \sin 581

$$
L_{\text{adv}} = \frac{1}{V + 1} \{ \sum_{v=0}^{V} \mathbb{E}[\log \mathcal{D}(x_v^{\text{GT}})] + \sum_{v=0}^{V} \mathbb{E}[\log(1 - \mathcal{D}(\hat{x}_v))] + \mathbb{E}[\log \mathcal{D}(x_0^{\text{GT}})] + \mathbb{E}[\log(1 - \mathcal{D}(x_{\text{aux}})) \}
$$
(22)

536

564

565

⁵⁸² **CLIP Loss:** To improve the consistency between the gener- 583 ated images and the text prompt y_{text} a CLIP loss [\[56\]](#page-17-20) is employed for text-image alignment.

$$
L_{\text{clip}} = \frac{1}{V + 1} \left[\sum_{v=0}^{V} (1 - \cos(\text{CLIP-I}(\hat{x}_v), \text{CLIP-T}(y_{\text{text}}))) + \right]
$$

(1 - \cos(\text{CLIP-I}(x_{\text{aux}}), \text{CLIP-T}(y_{\text{text}})))] (23)

⁵⁸⁵ where CLIP-I is the CLIP image encoder, and CLIP-T is the ⁵⁸⁶ CLIP text encoder.

 Reconstruction Loss: The generated images are compared to the ground truth images to ensure consistency through a reconstruction loss. For each input condition image and text prompt, we aim to minimize:

$$
L_{\text{recon}} = \frac{1}{V+1} \left[\sum_{v=0}^{V} (L_{\text{MSE}}(\hat{x}_v, x_v^{\text{GT}}) + \lambda \sum_{v=0}^{V} L_{\text{LPIPS}}(\hat{x}_v, x_v^{\text{GT}})) + L_{\text{MSE}}(x_{\text{aux}}, x_0^{\text{GT}}) + \lambda L_{\text{LPIPS}}(x_{\text{aux}}, x_0^{\text{GT}}) \right]
$$
(24)

 $_{591}$ where L_{MSE} is the normalized pixel-wise L2 loss, L_{LPIPS} is 592 the perceptual image patch similarity [\[54\]](#page-17-18). λ is a customized 593 weight to balance the losses. In default, $\lambda = 1.0$.

⁵⁹⁴ **Overall Loss:** The overall loss is a weighted sum of the ⁵⁹⁵ aforementioned losses:

$$
L_{\text{overall}} = L_{\text{recon}} + \lambda_{\text{adv}} L_{\text{adv}} + \lambda_{\text{clip}} L_{\text{clip}} \tag{25}
$$

596 where $\lambda_{\text{adv}} = 0.5$, $\lambda_{\text{clip}} = 5.0$ in default.

⁵⁹⁷ **Efficient Training:** By default, we configure the rendered 598 image resolution to 256×256 . However, performing direct 599 computations on the entire 256×256 renderings using E_{overall} is likely to lead to GPU memory overflow during ⁶⁰¹ training, mainly due to NeRF's significant memory require-⁶⁰² ments. To address this issue, we opt for a straightforward ⁶⁰³ yet efficient approach that trades space for time. Firstly, 604 we partition the original 256×256 images into smaller 605 local patches with a resolution of 128×128 . These local ⁶⁰⁶ patches are randomly chosen based on weighted sampling ⁶⁰⁷ of foreground pixels using the ground truth image mask. 608 Secondly, we downsample the original 256×256 images 609 to smaller global images with a resolution of 128×128 . ⁶¹⁰ Similar to the approach in LRM [\[6\]](#page-16-5), we utilize the deferred ⁶¹¹ back-propagation technique [\[65\]](#page-17-29) to conserve GPU memory. ⁶¹² In essence, the adjusted loss function is as delineated below:

$$
L_{\text{overall}} = L_{\text{recon}}^{\text{local}} + L_{\text{recon}}^{\text{global}} + \lambda_{\text{adv}} L_{\text{adv}}^{\text{global}} + \lambda_{\text{clip}} L_{\text{clip}}^{\text{global}}
$$
 (26)

613 where ^{global} means the loss is computed on the global 614 images. ^{local} means the loss is computed on the sampled ⁶¹⁵ local patches.

⁶¹⁶ **4 EXPERIMENT**

⁶¹⁷ **4.1 Experiment Details**

⁶¹⁸ *4.1.1 Training Details*

 Our training dataset comprises the training split of the G- Objaverse dataset [\[37\]](#page-17-1), which is a subset of Objaverse [\[35\]](#page-16-34). We have randomly selected 260k samples from the original 622 G-Objaverse for training, while the remaining samples are allocated for validation and evaluation purposes. The text prompts for each sample are sourced from Cap3D [\[66\]](#page-17-30). Additionally, the visual condition maps are derived from the multi-view images in the dataset, encompassing edge, sketch, depth, and normal annotations. Edge annotations are generated using the Canny edge detector [\[67\]](#page-17-31), sketch annotations are produced with the sketch generation model from ControlNet [\[34\]](#page-16-33). Depth and normal annotations are 630 provided by G-Objaverse, and further normalized to match 631 the format of MVControl (Li et al., 2024).

We initialize our network using the weights from the $\frac{1}{6}$ 633 pre-trained OpenLRM-base [\[68\]](#page-17-32). The image-conditioned 634 transformer from OpenLRM is removed, and our proposed 635 conditional backbone, incorporating text and visual condi- 636 tions (such as sketch, edge, depth, and normal), is appended $\frac{1}{637}$ as input. During training, the cross-attention layers in the 638 triplane transformer of OpenLRM are activated, while the 639 remaining layers are kept frozen. We utilize the AdamW 640 optimizer with a conservative learning rate of $4e-4$ for 641 training ControLRM on 16 Nvidia V100-32G GPUs. Each ⁶⁴² batch comprises 96 text-condition-image pairs. The training $\frac{643}{643}$ duration is estimated to be approximately 4-6 days for ⁶⁴⁴ ControLRM-T and 5-6 days for ControLRM-D. The input 645 resolution of the condition image is set to 336, while the 646 rendered image resolution is set to 256

4.1.2 Evaluation Dataset 648

For evaluation, we collect test samples from real world 649 datasets rather than manually generated samples $[14]$ to en- ϵ ₅₀ sure unbiased generation. Following the selection principle ϵ_{651} of MVControl [\[14\]](#page-16-32) and TripoSR [\[30\]](#page-16-28), test data is gathered 652 from three distinct datasets for comparative analysis in the 653 subsequent experiments. 654

(1) **G-OBJ**: We collect 118 samples with highest clip ϵ ₆₅₅ scores between the text annotation and multi-view images 656 from the test split of G-Objaverse dataset [\[37\]](#page-17-1), ensuring they 657 are absent from the training data. The text annotation is ⁶⁵⁸ obtained from Cap3D [\[66\]](#page-17-30). We manually select one reference 659 view from all provided 40 views in the dataset, and extract 660 the edge/sketch/depth/normal condition maps on that ref- 661 erence view. The remaining views are used as ground truth 662 multi-view images for benchmark evaluation. $\frac{663}{663}$

(2) $\textbf{GSO}:$ We also collect 80 samples from the Google 664 Scanned Objects dataset [\[69\]](#page-17-33) for zero-shot evaluation. This 665 dataset features more than one thousand 3D-scanned house- 666 hold items, serving as a valuable resource for assessing 667 the zero-shot generalization capabilities of the proposed 668 method. In analogy with G -OBJ, we manually select a single \quad 669 reference view from the 32 available views in the dataset. 670 Subsequently, edge/sketch/depth/normal condition maps 671 are generated for this chosen reference view. Text annota- 672 tions are obtained using BLIP2 [\[70\]](#page-17-34). The input data contains $\frac{673}{675}$ the prepared 2D condition map and the corresponding text ϵ_{674} prompt. The remaining views are utilized as the ground 675 truth for evaluation benchmark. The state of the state of ϵ

(3) **ABO**: We also select 80 samples from the Amazon 677 Berkeley Objects dataset [\[71\]](#page-17-35) for zero-shot evaluation. The 678 Amazon Berkeley Objects dataset is a comprehensive 3D 679 dataset comprising product catalog images, metadata, and 680 artist-designed 3D models featuring intricate geometries 681 and materials based on real household objects. Text anno- ⁶⁸² tations are generated using BLIP2 caption model $[70]$. We $$ 683 manually select one reference view from the 72 available $\frac{684}{684}$ views provided in the dataset and extract the four condition 685 maps (edge/sketch/depth/normal). The remaining views 686 are emplyed as ground truth for benchmark evaluation. $\frac{687}{687}$

TABLE 1

Quantitative results of controllability under **Edge (Canny)** condition in comparison with other SOTA 3D generation methods on **G-OBJ**. ↑ denotes higher result is better, while ↓ means lower is better. We report the metrics of **C-PSNR**, **C-SSIM**, and **C-MSE** in the table. The best results are highlighted with **underline**, and the second best ones are highlighted with **wavy-line**.

TABLE 2

Quantitative results of Controllability under **Sketch** condition in comparison with other SOTA 3D generation methods on **G-OBJ**. ↑ denotes higher result is better, while ↓ means lower is better. We report the metrics of **S-PSNR**, **S-SSIM**, and **S-MSE** in the table. The best results are highlighted with **underline**, and the second best ones are highlighted with **wavy-line**.

⁶⁸⁸ *4.1.3 Baselines*

 We compare our proposed ControLRM with other state- of-the-art baselines in the 3D generation task, including: (1) **Score-Distillation-Sampling (SDS) methods**: GSGEN, GaussianDreamer, and DreamGaussians [\[8\]](#page-16-7); (2) **3D-based Diffusion models**: VolumeDiffusion and 3DTopia [\[46\]](#page-17-10), [\[47\]](#page-17-11); (3) **Controllable 3D Diffusion models**: MVControl [\[14\]](#page-16-32). It is important to note that MVControl is the most relevant state- of-the-art controllable 3D generation method. For compari- son purposes, we utilize the official implementations of the aforementioned methods in the subsequent experiments.

⁶⁹⁹ **4.2 Experiment Results of 3D Controllability**

⁷⁰⁰ *4.2.1 Evluation Metrics*

 To assess the controllability of various 3D generation meth- ods, we have developed metrics tailored to gauge the con- sistency of input 2D conditions following ControlNet++ [\[72\]](#page-17-36). Four distinct conditions are taken into account: edge (canny), sketch, depth, and normal. Specific metrics have been intricately designed for each condition to quantify the extent to which the condition is maintained throughout the generation process:

 (1) **Edge Condition**: Given the 2D edge map on the reference view, we use the generated 3D content to render a new image at the same view. Subsequently, a Canny detector [\[67\]](#page-17-31) is employed to extract the edge image from the rendered image, allowing for a comparison between the edge image and the original condition image. The associ-ated hyperparameters for Canny detector is the same as

TABLE 3

Quantitative results of Controllability under **Depth** condition in comparison with other SOTA 3D generation methods on **G-OBJ**. ↓ denotes lower result is better. We report the metrics of **M-MSE**, **Z-MSE**, and **R-MSE** in the table. The best results are highlighted with **underline**, and the second best ones are highlighted with wavy-line.

TARI F 4

Quantitative results of Controllability under **Normal** condition in comparison with other SOTA 3D generation methods on **G-OBJ**. ↓ denotes lower result is better. We report the metrics of **NB-MSE**, and **DN-Consistency** in the table. The best results are highlighted with **underline**, and the second best ones are highlighted with wavy-line.

Methods	Normal						
	$NB-MSE \downarrow$	DN-Consistency \downarrow					
GSGEN [40]	0.0140	0.0412					
GaussianDreamer [41]	0.0133	0.0404					
DreamGaussians [39]	0.0141	0.0372					
VolumeDiffusion [47]	0.0129	0.0468					
3DTopia [46]	0.0240	0.0431					
MVControl [14]	0.0103	0.0421					
ControLRM-T (Ours)	0.0038	0.0216					
ControLRM-D (Ours)	0.0034	0.0205					

ControlNet [\[34\]](#page-16-33). To evaluate the resemblance of the edge 716 maps, performance metrics such as Peak Signal-to-Noise 717 Ratio (PSNR), Structural Similarity Index (SSIM), and Mean 718 Squared Error (MSE) are computed following [\[6\]](#page-16-5). These 719 metrics are further noted as **C-PSNR**, **C-SSIM**, and **C-MSE**. ⁷²⁰

(2) **Sketch Condition**: Given the 2D sketch image on τ_{21} the reference view, we use the generated 3D content to 722 render a new image at the same view. Subsequently, the zes sketch extraction network provided by ControlNet [\[34\]](#page-16-33) is 724 employed to derive the sketch map from the rendered zes image. We emply PSNR, SSIM, MSE assess the similarity zee between the generated sketch map and the original sketch zz map. These metrics are referred to as **S-PSNR**, **S-SSIM**, and ⁷²⁸ **S-MSE** in this study.

(3) **Depth Condition**: Given the 2D depth image on the ⁷³⁰ reference view, we use the generated 3D content to render $\frac{731}{2}$ the image and the depth at the same viewpoint.

On the one hand, we can evaluate the depth consistency $\frac{733}{2}$ with foundation models in monocular depth estimation (i.e. $\frac{734}{100}$ Midas [\[73\]](#page-17-37), ZoeDepth [\[74\]](#page-17-38)) following ControlNet++ [\[72\]](#page-17-36). 735 These foundation models are utilized to produce a depth $\frac{736}{136}$ map based on the input rendered image. Analogously, they $\frac{737}{2}$ are capable of estimating the depth map given a ground z₃₈ truth image as input on the reference view. By leveraging 739 the depth prior obtained from these foundation models, the 740 Mean Squared Error (MSE) distance between the estimated $_{741}$ depth maps of the ground truth image and the rendered ⁷⁴² image can indicate controllability under various depth con- ⁷⁴³ ditions. When using Midas as the foundation model, the ⁷⁴⁴ metric is denoted as **M-MSE**; whereas, if ZoeDepth is em- ⁷⁴⁵ ployed, the metric is referred to as **Z-MSE**. ⁷⁴⁶

On the other hand, an alternative method to assess depth 747

Fig. 4. Visualization comparison of controllability under different conditional controls (Edge/Depth/Normal/Sketch).

 consistency in 3D space involves comparing the disparity between the rendered depth map and the input conditional depth map. The disparity, measured by MSE distance, be- tween the rendered depth map and the input conditional depth map can also reflect the model's controllability per- formance. However, discrepancies in scale between the esti- mated relative depth map and the input conditional depth map may adversely affect the accuracy of the MSE metric. Thus, it becomes essential to address the scale discrepancy before evaluating the similarity between these depth maps. Following the approach outlined in [\[73\]](#page-17-37), we compute an ordinary least squares solution to adjust for the scale and shift between these depth maps. Subsequently, the scale and shift transformation is applied to the relative depth map, and the MSE is then calculated between it and the input conditional depth map. This enables the calculation of a scale-agnostic MSE metric to evaluate the similarity between the depth maps, providing an effective way to evaluate the 3D consistency of the rendered depth map, denoted as **R-**⁷⁶⁷ **MSE**.

⁷⁶⁸ (4) **Normal Condition**: Given the 2D normal map on the ⁷⁶⁹ reference view, we use the generated 3D results to render ⁷⁷⁰ the image and depth at the same viewpoint.

⁷⁷¹ Firstly, we can assess the normal consistency with

pre-trained models in surface normal estimation, such as 772 Normal-BAE [\[75\]](#page-17-39) following ControlNet++ [\[72\]](#page-17-36). The model 773 for surface normal estimation facilitates the extraction of 774 normal maps from rendered images. Similarly, the ground 775 truth image can be input into the model to derive estimated τ normal maps. As the pre-trained model can grasp the sur- $\frac{7}{77}$ face normal priors from the input images, the Mean Squared 778 Error (MSE) distance between these normal maps can indi- $\frac{775}{775}$ cate the controllability performance of the generation model. 780 This evaluation metric, based on Normal-BAE, is referred to r81 as **NB-MSE**. 782

Secondly, the evaluation of normal consistency in 3D 783 space involves comparing the resemblance between the ren- 784 dered depth maps and the input conditional normal maps. rss The rendered depth map on the reference view is normal-
 786 ized to 0 to 1 first, and then used to calculate the normal \sim map. The MSE distance between this converted normal map 788 and the input conditional normal map can demonstrate the r89 normal consistency throughout the generation process. This 790 metric, influenced by the depth-normal consistency in 3D 791 space, is labeled as **DN-consistency**.

4.2.2 Quantitative Results 793

Results with Canny Condition: The comparison of the ⁷⁹⁴ controllability of 3D generation methods under the Edge 795

TABLE 5

Quantitative comparison with SOTA 3d generation methods on G-Objaverse (**G-OBJ**) test set. We provide the zero-shot evaluation results of **FID** ↓, **CLIP-I** ↑ and **CLIP-T** ↑ on the test samples. The best results are highlighted with **underline**, and the second best ones are highlighted with wavy-line. We also provide the time consumption of each method on a single V100-32G GPU to compare the efficiency.

TABLE 6

Quantitative comparison with SOTA controllable 3D text-to-3d method (MVControl [\[14\]](#page-16-32)) on G-Objaverse (**G-OBJ**) [\[37\]](#page-17-1) test set. 4 kinds of different visual condition types are utilized for comparison here, including **Edge**, **Depth**, **Normal**, and **Sketch**. We provide the zero-shot evaluation results of **FID** ↓, **CLIP-I** ↑ and **CLIP-T** ↑ on the test samples. The best results are highlighted with **underline**, and the second best ones are highlighted with wavy-line.

Metrics	Methods	Reference View				All Views				Front-K Views			
		Edge	Depth	Normal	Sketch	Edge	Depth	Normal	Sketch	Edge	Depth	Normal	Sketch
	MVControl [14]	226.01	158.38	144.59	172.73	300.10	229.45	215.27	262.03	328.99	257.62	244.51	290.49
$FID \downarrow$	ControLRM-T	99.51 へへへへ	102.88	97.49	102.43	165.21 \sim	165.49	163.11 \sim	170.33 へへへへ	141.54 \sim \sim \sim	147.18	140.73	146.63
	ControLRM-D	98.45	109.20	103.09	105.57	158.73	166.36	161.62	166.28	139.02	156.91	148.17	150.95
	MVControl [14]	0.771	0.854	0.866	0.825	0.768	0.831	0.840	0.806	0.816	0.875	0.883	0.851
CLIP-I \uparrow	ControLRM-T	0.915 5555	0.914	0.919	0.912	0.879 へへへへ	0.881 ಮನ	0.881	0.876 ベススス	0.933	0.932	0.932	0.930
	ControLRM-D	0.920	0.902 ~~~	0.912 $\sim\sim$	0.911 $\sim\sim\sim$	0.889	0.885	0.888	0.886	$\sim\sim$ 0.939	0.931 $\sim\sim\sim$	0.935	0.935
	MVControl [14]	0.262	0.311	0.312	0.300	0.264	0.302	0.304	0.291	0.295	0.326 ನಿನಿನ	0.330	0.318
CLIP-T \uparrow	ControLRM-T	0.309	0.308	0.310	0.309	0.291	0.292	0.293	0.290	0.322	0.323	0.324	0.322
	ControLRM-D	$\sim\sim$ 0.318	$\sim\sim$ 0.311	$\sim\sim$ 0.316	$\sim\sim\sim$ 0.315	$\sim\sim\sim$ 0.301	0.299 ನಿನಿಸ	0.300 ನೆಸೆಸಿ	0.299	$\sim\sim$ 0.332	0.327	$\sim\sim$ 0.330	$\sim\sim\sim$ 0.329

TABLE 7

Quantitative comparison with SOTA 3d generation methods on Google Scanned Objects (**GSO**) test set. We provide the zero-shot evaluation results of **FID** ↓, **CLIP-I** ↑ and **CLIP-T** ↑ on the test samples. The best results are highlighted with **underline**, and the second best ones are highlighted with wavy-line. We also provide the time consumption of each method on a single V100-32G GPU to compare the efficiency.

 (Canny) condition is presented in Table [1.](#page-8-1) The aforemen- tioned metrics of **C-PSNR**, **C-SSIM**, and **C-MSE** in Sec. [4.2.1](#page-8-0) are utilized for evaluating controllability. Our approach establishes a new state-of-the-art benchmark, surpassing other methods by a significant margin. Specifically, our ControLRM-D and ControLRM-T achieve C-PSNR scores of 16.17 and 16.14 respectively, exhibiting an improvement 803 of approximately 6 compared to the baseline performance. Similar improvements can also be witnesses in C-SSIM and ⁸⁰⁵ C-MSE.

⁸⁰⁶ **Results with Sketch Condition** Tab. [2](#page-8-2) presents the state-of-807 the-art comparison for the controllability of 3D generation ⁸⁰⁸ results on Sketch condition. The evaluation includes the ⁸⁰⁹ results of three metrics introduced in Sec. [4.2.1:](#page-8-0) **S-PSNR**, 810 **S-SSIM**, and **S-MSE**. These metrics can reflect how much 811 sketch control information is preserved in the generated 3D 812 results. The results reveals that our models, ControLRM-813 D and ControLRM-T, outperform other methods signifi-⁸¹⁴ cantly across all three metrics. In comparison to the baseline 815 method, MVControl, our approach showcases a significant 816 enhancement, boasting around 6 points in S-PSNR, 0.25 in

S-SSIM, and 0.04 in S-MSE. 817

Results with Depth Condition Tab. [3](#page-8-3) shows the state-ofthe-art comparison for the controllability of 3D generation 819 methods on Depth condition. We report the scores of M- 820 **MSE, Z-MSE, and R-MSE** introduced in Sec. [4.2.1.](#page-8-0) From 821 the results in the table, our proposed methods, ControLRM- 822 D and ControLRM-T, outperform other baselines across 823 all three metrics of depth controllability. Specifically, our 824 proposed method demonstrates an improvement of approximately 0.04 in the M-MSE, 0.05 in Z-MSE, 0.03 in R-MSE, 826 compared to MVControl.

Results with Normal Condition Tab. [4](#page-8-4) shows the stateof-the-art comparison for the controllability of 3D gener- 829 ation methods on Normal condition. The evaluation met- 830 **rics include NB-MSE** and **DN-Consistency** introduced in 831 Sec. [4.2.1.](#page-8-0) From the comparison results, our proposed $\frac{1}{3}$ ControLRM-D/ControLRM-T models outperforms other 833 baselines in both NB-MSE and DN-Consistency metrics. ⁸³⁴ Specifically, ControLRM-D and ControLRM-T achieve NB- 835 MSE scores of 0.0034 and 0.0038, respectively, representing ase a notable improvement compared to MVControl (0.0103 837

TABLE 8

Quantitative comparison with SOTA controllable 3D text-to-3d method (MVControl [\[14\]](#page-16-32)) on Google Scanned Objects (**GSO**) [\[69\]](#page-17-33) test set. 4 kinds of different visual condition types are utilized for comparison here, including **Edge**, **Depth**, **Normal**, and **Sketch**. We provide the zero-shot evaluation results of **FID** ↓, **CLIP-I** ↑ and **CLIP-T** ↑ on the test samples. The best results are highlighted with **underline**, and the second best ones are highlighted with wavy-line.

TABLE 9

Quantitative comparison with SOTA 3d generation methods on Amazon Berkeley Objects (**ABO**) test set. We provide the zero-shot evaluation results of **FID** ↓, **CLIP-I** ↑ and **CLIP-T** ↑ on the test samples. The best results are highlighted with **underline**, and the second best ones are highlighted with wavy-line. We also provide the time consumption of each method on a single V100-32G GPU to compare the efficiency.

Metrics	Time \downarrow	Reference View				All Views		Front-K Views			
Methods		FID	CLIP-I \uparrow	CLIP-T \uparrow	FID \downarrow	CLIP-I \uparrow	CLIP-T \uparrow	$FID \perp$	CLIP-I \uparrow	CLIP-T \uparrow	
GSGEN [40]	≈ 40 min	304.49	0.664	0.257	366.47	0.669	0.259	376.56	0.691	0.272	
GaussianDreamer [41]	\approx 2 min	148.70	0.820	0.297	225.38	0.787	0.277	226.56	0.831	0.306	
DreamGaussians [39]	\approx 15 min	340.64	0.729	0.248	392.95	0.723	0.247	406.35	0.750	0.290	
VolumeDiffusion [47]	142.55 sec	288.28	0.698	0.247	350.46	0.679	0.242	372.49	0.715	0.262	
3DTopia [46]	177.89 sec	247.89	0.692	0.273	231.55	0.751	0.272	259.88	0.844	0.312	
MVControl [14]	8.92 sec	149.61	0.857	0.305	217.97	0.802	0.291 $\sim\sim$	236.81	0.868	0.316	
ControLRM-T	0.148 sec	85.08 へへへへ	0.913 へへへ	0.311	202.14 $\sim\sim\sim\sim$	0.827	0.282	160.12 \sim \sim	0.915	0.320	
ControLRM-D	0.503 sec	80.12	0.914	$\sim\sim$ 0.320	181.84	0.836 $\sim\sim\sim$	0.292	152.37	$\sim\sim$ 0.918	0.324	

TABLE 10

Quantitative comparison with SOTA controllable 3D text-to-3d method (MVControl [\[14\]](#page-16-32)) on Amazon Berekely Objects (**ABO**) [\[71\]](#page-17-35) test set. 4 kinds of different visual condition types are utilized for comparison here, including **Edge**, **Depth**, **Normal**, and **Sketch**. We provide the zero-shot evaluation results of **FID** ↓, **CLIP-I** ↑ and **CLIP-T** ↑ on the test samples. The best results are highlighted with **underline**, and the second best ones are highlighted with **wavy-line**.

838 NB-MSE). Significant improvment of our models in DN-839 Consistency score can also be found in the table.

⁸⁴⁰ *4.2.3 Qualitative Results*

841 Controllable 3D generation requires the persistence of input ⁸⁴² conditions as a crucial ability. The generated 3D contents ⁸⁴³ should retain the control information of the input condi-⁸⁴⁴ tions. For qualitative comparison of 3D controllability, we 845 visualize the generated results and the extracted condition 846 maps in Fig. [4.](#page-9-0) The first two columns display the visualiza-847 tion of text and 2D visual conditions. Subsequent columns 848 exhibit the visualization results of the rendered images ⁸⁴⁹ and the extracted visual condition map from them. The ⁸⁵⁰ comparison encompasses several methods: our ControLRM-⁸⁵¹ D (columns 3-4), ControLRM-T (columns 5-6), MVControl ⁸⁵² (columns 7-8) [\[14\]](#page-16-32), and DreamGaussian (columns 9-10) [\[39\]](#page-17-3). ⁸⁵³ Each row of the figure corresponds to a specific control ⁸⁵⁴ condition: Rows 1-2 (Edge), Rows 3-4 (Sketch), Rows 5-6 855 (Depth), and Rows 7-8 (Normal). As shown in the figure, 856 ControLRM-D and ControLRM-T can effectively preserve

the control information in the generated 3D content. For $\frac{857}{252}$ instance, in the first and second rows, the controllability 858 results of MVControl and DreamGaussian under the Canny 859 condition appear noticeably fuzzier compared to those of 860 ControLRM-D/T. It demonstrates our proposed method can s61 effectively maintain the controllability during 3D genera- 862 tion, providing better scalability compared with existing 863 methods. Support that the second service is a service of the service of

4.3 Experimental Results of Controllable 3D Genera- ⁸⁶⁵ **tion** 866

4.3.1 Evaluation Metrics 867

For evaluation, we quantitatively compare our proposed 868 method with baselines by measuring the quality of gener- $\frac{1}{869}$ ated 3D contents with **FID**, the consistency to the reference 870 ground truth image with **CLIP-I**, and the consistency to the $\frac{871}{871}$ reference text description with **CLIP-T**.

Render FID: Following LATTE3D [\[49\]](#page-17-13), we compute the 873 Fréchet Inception Distance (FID) [\[76\]](#page-17-40) between the render- 874 ings of the generated 3D contents and the collected ground 875

Text	Condition	Rendered Novel Views			Rendered Novel Views		Rendered Novel Views		Rendered Novel Views	Rendered Novel Views	
Low poly a hamburger. $G-OBJ$	ngen.					$\mathcal{L}(\mathcal{E},\mathcal{E})$					
A wooden console side table with drawers and shelves. G-OBJ								詩			
A bearded moai stone head sculpture. G -OBJ						ś		乖	湧	i.	ŧ
A small wooden house with a tin roof. G-OBJ	圖					\equiv	88.				
A doll wearing a yellow hoodie and jeans. GSO	Ţ										þ
A bell with a wooden handle GSO											
A 3d model of a cactus GSO		Y	\vee	Y	V		k.				
A silver toaster GSO											
A gray couch with two arms and a back ABO											
A small side table with a shelf on it ABO											
A nightstand with two drawers. ABO											
A brown leather ottoman ABO											
Input Condition		ControLRM-D		ControLRM-T		MVControl		DreamGaussian		VolumeDiffusion	

Fig. 5. Qualitative comparison with SOTA 3D generation methods, including MVControl [\[14\]](#page-16-32), DreamGaussian [\[39\]](#page-17-3), and VolumeDiffusion [\[47\]](#page-17-11). To avoid cherry-picking, the input conditions are extracted from **G-OBJ**, **GSO**, and **ABO** datasets. None of the images are observed by our model during training. Please zoom in for clearer visualization.

876 truth multi-view images. This metric can measure how well 877 the generated shapes align with those from the 2D prior in ⁸⁷⁸ visual quality.

879 **CLIP-I**: Following MVControl [\[14\]](#page-16-32), we measure the CLIP 880 scores of image features extracted from the renderings of 881 the generated 3D contents and the collected ground truth ⁸⁸² images on different views. This metric aims to reveal the 883 similarity between the rendering results of generated 3D ⁸⁸⁴ contents and the ground truth images.

⁸⁸⁵ **CLIP-T**: Following MVControl [\[14\]](#page-16-32), we also measure the 886 CLIP scores of the image features extracted from the render-⁸⁸⁷ ings and the given text prompt. This metric can measure the 888 similarity between the generated 3D contents and the given ⁸⁸⁹ text descriptions.

⁸⁹⁰ **Multi-view Settings**: The evaluation protocol of MV-891 Control [\[14\]](#page-16-32) only calculate the CLIP score between the

generated multi-view images and real ground truth im- ⁸⁹² ages on the reference view. However, merely evaluating 893 the performance with ground truth on only one reference 894 view is not comprehensive for comparing 3D generated 895 contents. Because a single view can only capture a portion sse of the 3D object, often omitting unseen parts. Consequently, some utilizing multi-view ground truth is essential to enhance the sse evaluation protocol. As discussed in Sec. [4.1.2,](#page-7-0) we collect 899 **samples with multi-view ground truth from G-OBJ**, **GSO**, 900 and **ABO**. By incorporating these multi-view samples, we some enhance the original benchmark used in MVControl [\[14\]](#page-16-32) 902 to be more comprehensive in the following manner: (1) 903 **Reference View**: The rendered image and ground truth 904 image on the reference view are utilized to compute metrics $\frac{1}{905}$ including FID, CLIP-I, and CLIP-T; (2) **All Views**: All views 906 are taken into account when calculating the three metrics 907

Fig. 6. Visualization of rendered novel views (RGB and depth) generated by our ControLRM-D. The samples are extracted from **G-OBJ**, **GSO**, and **ABO** datasets. None of the images are observed by our model during training. Please zoom in for clearer visualization.

 between the rendered and ground truth images; (3) **Front- K Views**: Given the provision of only one reference view, 910 the views on the back side may lack crucial cues for pre-911 cise prediction, potentially leading to unreliable results in multi-view scenarios. Therefore, incorporating an additional evaluation of the views in front of the reference view is necessary. Consequently, we select the K views closest to the 915 given reference view for further metric computation, with the default value of K set to 4.

⁹¹⁷ *4.3.2 Quantitative Comparison on G-OBJ*

 To demonstrate the effectiveness of the proposed method 919 in controllable 3D generation, we present the quantitative results on the **G-OBJ** benchmark in Tab. [5](#page-10-0) and [6.](#page-10-1) Tab. [5](#page-10-0) shows the comparison of **FID**, **CLIP-I**, **CLIP-T** with other 922 baselines. We report the mean score of these metrics under four different conditions (edge/depth/normal/sketch). The time efficiency of each method on a single V100-32G GPU is reported as well. In the tables, we adopt three different multi-view settings during evaluation as discussed in Sec. [4.3.1.](#page-11-0) As shown in Tab. [5,](#page-10-0) ControLRM-T achieves an infer- ence speed of 0.148 seconds per sample, while ControLRM- D achieves 0.503 seconds per sample. Our ControLRM mod- els significantly enhance the inference speed by an order of 931 magnitude when compared to alternative methods. In addi- tion to the siginificant improvement in time efficiency, the benchmark results on nine metrics also show that our Con-934 troLRM can achieve significantly better performance than 935 other baselines. For example, ControLRM-D/ControLRM- T achieves 104.08/101.06 Reference FID score, 0.911/0916 936 Reference CLIP-I score, and 0.315/0.309 Reference CLIP-T 937 score. The baselines achieve over 175 FID score, which is sig-
sag nificantly higher than ControLRM. It demonstrates the su-
939 perior ability and efficiency of the proposed method in con- ⁹⁴⁰ trollable 3D generation. Tab. [6](#page-10-1) shows the direct comparison $_{941}$ with SOTA method (MVControl [\[14\]](#page-16-32)) on four different visual conditions . Similar to Tab. [5,](#page-10-0) the metrics of **FID**, **CLIP-** ⁹⁴³ **I** and **CLIP-T** under three different multi-view settings are ⁹⁴⁴ used to reveal the quality of the generated 3D contents. On 945 most of the evaluation metrics, our ControLRM can achieve 946 competetive and even better performance than MVControl, ⁹⁴⁷ and the inference speed is significantly faster Specifically, 948 the inference speeds of ControLRM-D (0.503 sec/sample) 949 and ControLRM-T (0.148 sec/sample) are much faster than 950 MVControl $(8.92 \text{ sec/sample})$. It demonstrates the superior 951 ability and efficiency of the proposed method in controllable 952 3D generation.

4.3.3 Quantitative Comparison on GSO ⁹⁵⁴

To demonstrate the generalization ability of the proposed 955 method on the task of controllable 3D generation, we 956 provide the experimental results on **GSO** benchmark and 957 compare our model with other state-of-the-art methods 958 introduced in Sec. [4.1.3.](#page-8-5) Similar to Sec. [4.3.2,](#page-13-0) we also use 959 the evaluation metrics of **FID**, **CLIP-I**, and **CLIP-T** to ⁹⁶⁰ measure the performance on controllable 3D generation. $\frac{1}{961}$ These metrics are also calculated under 3 different multi- 962 view settings as introduced in Sec. [4.3.1.](#page-11-0) In Tab. [7,](#page-10-2) we 963

Fig. 7. Visualization of the evaluation results (**FID**/**CLIP-I**/**CLIP-T**) at different amounts of optimization time on a single V100-32G GPU. In comparison with the state-of-the-art controllable 3D generation method, MVControl [\[14\]](#page-16-32), our ControLRM can achieve over faster speed and better performance.

⁹⁶⁴ present the quantitative comparison among our proposed ⁹⁶⁵ ControLRM and the baselines. In most of the reported ⁹⁶⁶ metrics, our ControLRM can achieve competetive and even 967 better performance compared with the baselines. As the ⁹⁶⁸ table shows, our ControLRM-D and ControLRM-T outper-⁹⁶⁹ form other baselines on the metrics of FID and CLIP-I in 970 all view settings. For example, under the reference view 971 setting, our ControLRM-D/T can achieve 169.73/169.69 972 FID, significantly lower than the best one of the baselines, 973 MVControl (194.97 FID score). The zero-shot experiments ⁹⁷⁴ on **GSO** can demonstrate the great generalization ability of 975 the proposed method on unseen test cases. We also provide 976 the quantitative comparison between our ControLRM and 977 MVControl [\[14\]](#page-16-32) in Tab. [8](#page-11-1) under 4 different input condi-978 tions. The table shows that our proposed ControLRM is 979 still competitive compared with MVControl. For Edge and ⁹⁸⁰ Sketch condition, both of ControLRM-D and ControLRM-981 T achieves better performance than MVControl in terms ⁹⁸² of FID, CLIP-I, and CLIP-T. For the Depth and Normal ⁹⁸³ conditions, ControLRM-D competes effectively with MV-⁹⁸⁴ Control, although ControLRM-T shows slightly inferior per-⁹⁸⁵ formance. An important reason is the preciseness of the ⁹⁸⁶ given depth or normal map in controllable 3D generation. 987 Our ControLRM is trained using the ground truth depth or normal map of the dataset, which provides absolutely 988 precise geometric prior as conditional input. Whereas in $\frac{1}{988}$ the GSO benchmark, we extract the depth and normal 990 maps using the annotator provided by MVControl. The 991 estimated depth and normal maps generated by the models 992 provided by MVControl lack precision, leading to signif-
993 icant deviations in the predicted results. This inaccuracy 994 can be misleading for ControLRM, which relies on precise 995 geometric conditions.

A.3.4 Quantitative Comparison on ABO 997

To evaluate the zero-shot generalization performance on 998 controllable 3D generation, we further conduct experiments 999 on **ABO** benchmark. The quantitative comparison with 1000 other state-of-the-art methods in 3D generation introduced 1001 in Sec. [4.1.3](#page-8-5) is presented in Tab. [9.](#page-11-2) The table employs the 1002 metrics of **FID**, **CLIP-I**, and **CLIP-T** to evaluate the perfor- ¹⁰⁰³ mance of controllable 3D generation. These metrics are computed under three distinct multi-view settings discussed in ¹⁰⁰⁵ Section [4.3.1.](#page-11-0) From the table, we can find that ControLRM- 1006 D outperforms other baselines on all metrics. ControLRM- 1007 T achieves the second best performance in most of these 1008 metrics. In Tab. [10,](#page-11-3) we compare our ControLRM with MV- 1009 Control quantitatively under 4 different input conditions. In $_{1010}$

TABLE 11 Ablation analysis of each component in the training losses.

Models				Canny							
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID \downarrow	CLIP-I \uparrow	CLIP-T \uparrow					
Basic Training (L _{recon})	18.810	0.8198	0.1723	105.752	0.9061	0.3031					
+Adv Loss (L_{adv})	19.445	0.8303	0.1581	100.163	0.9145	0.3085					
+CLIP Loss (L_{clip})	19.452	0.8306	0.1579	99.867	0.9147	0.3087					
+2D Auxiliary $(xaux)$	19.454	0.8306	0.1579	99.512	0.9150	0.3091					
Models		Depth									
	PSNR \uparrow	SSIM ↑	LPIPS \downarrow	FID \downarrow	CLIP-I \uparrow	CLIP-T \uparrow					
Basic Training (L_{recon})	19.476	0.8314	0.1578	106.049	0.9079	0.3036					
+Adv Loss (L_{adv})	20.051	0.8414	0.1469	103.625	0.9127	0.3068					
+CLIP Loss (L_{clip})	20.066	0.8416	0.1465	103.220	0.9131	0.3075					
+2D Auxiliary $(xaux)$	20.070	0.8417	0.1464	102.875	0.9135	0.3078					
Models	Normal										
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FID \downarrow	CLIP-I \uparrow	CLIP-T \uparrow					
Basic Training (L_{recon})	19.425	0.8312	0.1618	102.247	0.9133	0.3033					
+Adv Loss (L_{adv})	19.903	0.8371	0.1518	98.694	0.9168	0.3063					
+CLIP Loss (L_{clip})	19.905	0.8374	0.1517	97.724	0.9180	0.3103					
+2D Auxiliary $(xaux)$	19.909	0.8375	0.1516	97.489	0.9189	0.3103					
Models	Sketch										
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	$FID \downarrow$	CLIP-I \uparrow	CLIP-T \uparrow					
Basic Training (L_{recon})	18.910	0.8205	0.1703	109.158	0.9023	0.3048					
+Adv Loss (L_{adv})	19.546	0.8315	0.1588	103.164	0.9113	0.3085					
+CLIP Loss (L_{clip})	19.552	0.8318	0.1585	102.710	0.9118	0.3087					
+2D Auxiliary (x_{aux})	19.554	0.832	0.1583	102.426	0.9121	0.309					

 the **ABO** benchmark, ControLRM-D exhibits competitive or superior performance in terms of **FID**, **CLIP-I**, and **CLIP- T** when compared to MVControl across all four conditions. Conversely, our lightweight model, ControLRM-T, performs slightly less effectively than MVControl under depth and normal conditions but excels in canny and sketch condi- tions. As outlined in Sec. [4.3.3,](#page-13-1) the extraction of depth and normal maps relies on pre-trained models supplied by MV- Control. Notably, ControLRM is trained using ground truth depth and normal maps, which differ from the estimated maps provided by the pre-trained models. This distribution discrepancy between the ground truth and estimated maps adversely impacts the performance of ControLRM.

¹⁰²⁴ *4.3.5 Qualitative Results*

 In Fig. [5,](#page-12-0) we compare our ControLRM-D/T with state-of- the-art 3D generation methods: MVControl [\[14\]](#page-16-32), Dream- Gaussian [\[39\]](#page-17-3), and VolumeDiffusion [\[47\]](#page-17-11). The figure dis- plays rendered novel views under four different condition controls (Edge/Depth/Normal/Sketch). Our model demon- strates superior performance compared to other baselines, exhibiting higher quality and consistency in the generated 3D contents. To ensure unbiased evaluation, we adopt in- put samples collected from **G-OBJ**, **GSO**, and **ABO** which are unseen in the training dataset following LRM [\[6\]](#page-16-5). The figure illustrates the capability of our ControLRM-D/T to infer semantically plausible 3D content from a single-view input visual condition. Additionally, we showcase more examples of generated 3D content from input conditions generated by **G-OBJ**, **GSO**, and **ABO** in Figure [6,](#page-13-2) produced by our ControLRM-D. The rendered images and depth maps in novel views are jointly visualized. Our model adeptly captures the intricate geometry of diverse input conditions (such as hands, guns, axes, etc.), and maintains consistent texture generation across the outputs. The fidelity to the input visual conditions in the generated results underscores the exceptional performance and generalization capabilities of our model.

¹⁰⁴⁸ **4.4 Extra Experiments**

¹⁰⁴⁹ **Efficiency Comparison:** To provide a direct comparison ¹⁰⁵⁰ of efficicency, we compare our ControLRM-D/T with the SOTA controllable 3D generation model MVControl [\[14\]](#page-16-32) 1051 in Fig. [7.](#page-14-0) MVControl consists of two stages: the first stage 1052 generates a coarse 3D content, and the second stage attempts 1053 to optimize the 3D content with test-time optimization us-ing SDS loss [\[8\]](#page-16-7). The quality of the generated 3D content 1055 improves over prolonged test-time optimization. Both of ¹⁰⁵⁶ these stages are compared in the figure. We present visu- ¹⁰⁵⁷ alizations of three evaluation metrics (FID, CLIP-I, CLIP-T) 1058 across three different multi-view settings (Reference View, 1059 All Views, Front-K Views) alongside the corresponding time 1060 consumption. The average time consumed for generating ¹⁰⁶¹ a single 3D content per sample on a V100-32G GPU is ¹⁰⁶² reported. We find that the refinement stage of MVControl 1063 tends to return worse performance than the coarse stage on 1064 the real-world data rather than the manually generated data $_{1065}$ $used$ in their paper. 1066

Ablation Study: We conduct additional experiments to ¹⁰⁶⁷ comprehensively analyize the contributions of the key com-
1068 ponents in our ControLRM framework. The ablation results 1069 under four different conditions are provided in Tab. [11.](#page-15-0) By 1070 default, we utilized ControLRM-T in the ablation experi- ¹⁰⁷¹ ments. For evaluation, we reported the metrics of **PSNR**, ¹⁰⁷² **SSIM**, **LPIPS**, **FID**, **CLIP-I**, and **CLIP-T** in the table follow- ¹⁰⁷³ ing MVControl [\[14\]](#page-16-32). In the table, "Basic Training" indicates 1074 that the model was solely trained with the reconstruction 1075 loss L_{recon} . "+Adv Loss" signifies the addition of adversarial 1076 loss L_{adv} to the reconstruction loss L_{recon} . Similarly, "+CLIP 1077 Loss" indicates the incorporation of clip loss L_{clip} . "+2D 1078 Auxiliary" refers to the adoption of auxiliary supervision on 1079 x_{aux} . The results demonstrate that the basic training scheme 1080 could achieve relatively good performance and meaning- ¹⁰⁸¹ ful generation with the support of large-scale pre-training 1082 weights from LRM $[6]$, achieving a PSNR of approximately 1083 $18-19$ in each of the four different conditions. The inclusion 1084 of adversarial loss L_{adv} can led to an improvement of 3 1085 to 5 in FID. Furthermore, the addition of clip loss L_{clip} 1086 and 2D auxiliary supervision x_{aux} can slightly enhance the $\frac{1087}{1087}$ FID by about 0.5. Overall, the results in the table highlight 1088 the effectiveness of each component in our ControLRM 1089 framework in enhancing the performance of controllable $3D_{1090}$ generation. 1091

5 LIMITATION ¹⁰⁹²

In this study, the quantitative and qualitative analysis prove $\frac{1093}{1093}$ the superiority of our proposed method, but we also realize $_{1094}$ that this work is still insufficient and discuss the follow- ¹⁰⁹⁵ ing limitations: **(1) Condition Expansion:** While significant 1096 advancements have been made under four control condi- ¹⁰⁹⁷ tions, it is crucial to extend this framework to encompass ¹⁰⁹⁸ additional control conditions such as segmentations, pose, 1099 and others. **(2) Generalization Bottleneck:** The bottleneck ¹¹⁰⁰ of the proposed method is attributed to the utilization of the ¹¹⁰¹ pre-trained Large Reconstruction Model (LRM). Although 1102 the proposed approach effectively aligns the controllable 1103 2D generator with the pre-trained triplane decoder, failures $_{1104}$ in the pre-trained LRM could result in the failure of our ¹¹⁰⁵ ControLRM. Therefore, enhancing the performance by employing a more robust backbone can address this issue. 1107

¹¹⁰⁸ **6 CONCLUSION**

 This paper introduces ControLRM, a novel controllable 3D generation framework characterized by high speed and superior generation quality. Our model offers support for four different types of controls: Edge (Canny), Depth, Nor- mal, and Sketch. The architecture comprises an end-to-end feed-forward network that includes a 2D condition encoder based on transformer or diffusion models and a 3D triplane decoder leveraging a pre-trained LRM, where only the cross-attention layers are active during training. Addition- ally, we introduce an joint training pipeline encompassing adversarial loss, clip loss, and reconstruction loss. To ensure fair evaluation, we collect unseen evaluation samples from three different datasets: G-OBJ, GSO, and ABO. The com- prehensive quantitative and qualitative evaluation findings demonstrate that our model surpasses existing state-of-the- art methods and achieves generation speeds significantly faster by an order of magnitude.

¹¹²⁶ **REFERENCES**

- ¹¹²⁷ [1] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, "Zero-shot text-to-image generation," ¹¹²⁹ in International conference on machine learning. Pmlr, 2021, pp. 1130 8821–8831.
1131 [2] R. Rombac
- ¹¹³¹ [2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, ¹¹³² "High-resolution image synthesis with latent diffusion models," ¹¹³³ in Proceedings of the IEEE/CVF conference on computer vision ¹¹³⁴ and pattern recognition, 2022, pp. 10 684–10 695.
- ¹¹³⁵ [3] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and ¹¹³⁶ C. Vondrick, "Zero-1-to-3: Zero-shot one image to 3d object," ¹¹³⁷ in Proceedings of the IEEE/CVF international conference on ¹¹³⁸ computer vision, 2023, pp. 9298–9309.
- ¹¹³⁹ [4] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-¹¹⁴⁰ mamoorthi, and R. Ng, "Nerf: Representing scenes as neural ¹¹⁴¹ radiance fields for view synthesis," Communications of the ACM, ¹¹⁴² vol. 65, no. 1, pp. 99–106, 2021.
- 1143 [5] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, "3d gaus-¹¹⁴⁴ sian splatting for real-time radiance field rendering." ACM Trans. ¹¹⁴⁵ Graph., vol. 42, no. 4, pp. 139–1, 2023.
- ¹¹⁴⁶ [6] Y. Hong, K. Zhang, J. Gu, S. Bi, Y. Zhou, D. Liu, F. Liu, ¹¹⁴⁷ K. Sunkavalli, T. Bui, and H. Tan, "Lrm: Large reconstruction ¹¹⁴⁸ model for single image to 3d," arXiv preprint arXiv:2311.04400, 1149 2023.
1150 [7] J. Tai
- ¹¹⁵⁰ [7] J. Tang, Z. Chen, X. Chen, T. Wang, G. Zeng, and Z. Liu, "Lgm: ¹¹⁵¹ Large multi-view gaussian model for high-resolution 3d content ¹¹⁵² creation," arXiv preprint arXiv:2402.05054, 2024.
- ¹¹⁵³ [8] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, "Dreamfusion: ¹¹⁵⁴ Text-to-3d using 2d diffusion," arXiv preprint arXiv:2209.14988, ¹¹⁵⁵ 2022.
- ¹¹⁵⁶ [9] R. Chen, Y. Chen, N. Jiao, and K. Jia, "Fantasia3d: Disentangling ¹¹⁵⁷ geometry and appearance for high-quality text-to-3d content cre-¹¹⁵⁸ ation," in Proceedings of the IEEE/CVF international conference ¹¹⁵⁹ on computer vision, 2023, pp. 22 246–22 256.
- ¹¹⁶⁰ [10] J. Sun, B. Zhang, R. Shao, L. Wang, W. Liu, Z. Xie, and Y. Liu, ¹¹⁶¹ "Dreamcraft3d: Hierarchical 3d generation with bootstrapped dif-¹¹⁶² fusion prior," arXiv preprint arXiv:2310.16818, 2023.
- ¹¹⁶³ [11] Z. Wang, C. Lu, Y. Wang, F. Bao, C. Li, H. Su, and J. Zhu, "Pro-¹¹⁶⁴ lificdreamer: High-fidelity and diverse text-to-3d generation with ¹¹⁶⁵ variational score distillation," Advances in Neural Information ¹¹⁶⁶ Processing Systems, vol. 36, 2024.
- ¹¹⁶⁷ [12] O. Katzir, O. Patashnik, D. Cohen-Or, and D. Lischinski, "Noise-¹¹⁶⁸ free score distillation," arXiv preprint arXiv:2310.17590, 2023.
- ¹¹⁶⁹ [13] X. Yu, Y.-C. Guo, Y. Li, D. Liang, S.-H. Zhang, and X. Qi, ¹¹⁷⁰ "Text-to-3d with classifier score distillation," arXiv preprint 1171 arXiv:2310.19415, 2023.
1172 [14] Z. Li. Y. Chen, L. Zł
- Z. Li, Y. Chen, L. Zhao, and P. Liu, "Controllable text-to-3d ¹¹⁷³ generation via surface-aligned gaussian splatting," arXiv preprint ¹¹⁷⁴ arXiv:2403.09981, 2024.
- ¹¹⁷⁵ [15] J. L. Schonberger and J.-M. Frahm, "Structure-from-motion revis-¹¹⁷⁶ ited," in Proceedings of the IEEE conference on computer vision ¹¹⁷⁷ and pattern recognition, 2016, pp. 4104–4113.
- [16] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz, 1178 "Multi-view stereo for community photo collections," in 2007 IEEE 1179 11th International Conference on Computer Vision. IEEE, 2007, ¹¹⁸⁰ pp. 1–8. ¹¹⁸¹
- [17] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, "Mvsnet: Depth 1182 inference for unstructured multi-view stereo," in Proceedings of ¹¹⁸³ the European conference on computer vision (ECCV), 2018, pp. ¹¹⁸⁴ 767–783. ¹¹⁸⁵
- [18] H. Xu, Z. Zhou, Y. Qiao, W. Kang, and Q. Wu, "Self- ¹¹⁸⁶ supervised multi-view stereo via effective co-segmentation and 1187 data-augmentation," in Proceedings of the AAAI Conference on ¹¹⁸⁸ Artificial Intelligence, vol. 35, no. 4, 2021, pp. 3030–3038. 1189
- [19] H. Xu, Z. Zhou, Y. Wang, W. Kang, B. Sun, H. Li, and Y. Qiao, 1190 "Digging into uncertainty in self-supervised multi-view stereo," ¹¹⁹¹ in Proceedings of the IEEE/CVF International Conference on ¹¹⁹² Computer Vision, 2021, pp. 6078–6087.
- [20] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, "3d 1194 gaussian splatting for real-time radiance field rendering," ACM ¹¹⁹⁵ Transactions on Graphics, vol. 42, no. 4, July 2023. [Online]. Avail- 1196 able:<https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/> ¹¹⁹⁷
- [21] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger, "Differ- 1198 entiable volumetric rendering: Learning implicit 3d representa- ¹¹⁹⁹ tions without 3d supervision," in Proceedings of the IEEE/CVF ¹²⁰⁰ conference on computer vision and pattern recognition, 2020, pp. 1201 3504–3515. ¹²⁰²
- [22] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and ¹²⁰³ Y. Lipman, "Multiview neural surface reconstruction by disentan- ¹²⁰⁴ gling geometry and appearance," Advances in Neural Information 1205 Processing Systems, vol. 33, pp. 2492–2502, 2020.
- [23] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin- ¹²⁰⁷ Brualla, and P. P. Srinivasan, "Mip-nerf: A multiscale represen- ¹²⁰⁸ tation for anti-aliasing neural radiance fields," in Proceedings of ¹²⁰⁹ the IEEE/CVF international conference on computer vision, 2021, 1210 pp. 5855–5864. 1211
- [24] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, "Tensorf: Tensorial 1212 radiance fields," in European conference on computer vision. 1213 Springer, 2022, pp. 333–350. 1214
- [25] R. Liu, R. Wu, B. V. Hoorick, P. Tokmakov, S. Zakharov, and 1215 Vondrick, "Zero-1-to-3: Zero-shot one image to 3d object," 2023. 1216
- [26] W. Li, R. Chen, X. Chen, and P. Tan, "Sweetdreamer: Aligning 1217 geometric priors in 2d diffusion for consistent text-to-3d," arXiv ¹²¹⁸ preprint arXiv:2310.02596, 2023. 1219
- [27] Y. Liu, C. Lin, Z. Zeng, X. Long, L. Liu, T. Komura, and W. Wang, 1220 "Syncdreamer: Generating multiview-consistent images from a ¹²²¹ single-view image," arXiv preprint arXiv:2309.03453, 2023. 1222
- [28] X. Long, Y.-C. Guo, C. Lin, Y. Liu, Z. Dou, L. Liu, Y. Ma, S.- ¹²²³ H. Zhang, M. Habermann, C. Theobalt et al., "Wonder3d: Sin- ¹²²⁴ gle image to 3d using cross-domain diffusion," in Proceedings 1225 of the IEEE/CVF Conference on Computer Vision and Pattern ¹²²⁶ Recognition, 2024, pp. 9970–9980.
- [29] Y. Shi, P. Wang, J. Ye, M. Long, K. Li, and X. Yang, "Mv- ¹²²⁸ dream: Multi-view diffusion for 3d generation," arXiv preprint 1229 arXiv:2308.16512, 2023. 1230 arXiv:2308.16512, 2023.
- [30] D. Tochilkin, D. Pankratz, Z. Liu, Z. Huang, A. Letts, Y. Li, ¹²³¹ D. Liang, C. Laforte, V. Jampani, and Y.-P. Cao, "Triposr: Fast ¹²³² 3d object reconstruction from a single image," $\frac{\text{arXiv}}{\text{arXiv}}$ preprint 1233
arXiv:2403.02151.2024. arXiv:2403.02151, 2024.
- [31] Z.-X. Zou, Z. Yu, Y.-C. Guo, Y. Li, D. Liang, Y.-P. Cao, and S.-H. ¹²³⁵ Zhang, "Triplane meets gaussian splatting: Fast and generalizable ¹²³⁶ single-view 3d reconstruction with transformers," in Proceedings 1237 of the IEEE/CVF Conference on Computer Vision and Pattern ¹²³⁸ Recognition, 2024, pp. 10324-10335. 1239
- [32] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. De Mello, 1240 O. Gallo, L. J. Guibas, J. Tremblay, S. Khamis et al., "Effi- ¹²⁴¹ cient geometry-aware 3d generative adversarial networks," in ¹²⁴² Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 16 123-16 133.
- [33] K. Zhang, S. Bi, H. Tan, Y. Xiangli, N. Zhao, K. Sunkavalli, ¹²⁴⁵ and Z. Xu, "Gs-lrm: Large reconstruction model for 3d gaussian ¹²⁴⁶ splatting," arXiv preprint arXiv:2404.19702, 2024.
- [34] L. Zhang, A. Rao, and M. Agrawala, "Adding conditional con- ¹²⁴⁸ trol to text-to-image diffusion models," in Proceedings of the ¹²⁴⁹ IEEE/CVF International Conference on Computer Vision, 2023, ¹²⁵⁰ pp. 3836–3847. 1251
- [35] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. Van- ¹²⁵² derBilt, L. Schmidt, K. Ehsani, A. Kembhavi, and A. Farhadi, ¹²⁵³ "Objaverse: A universe of annotated 3d objects," in Proceedings ¹²⁵⁴

¹²⁵⁵ of the IEEE/CVF Conference on Computer Vision and Pattern ¹²⁵⁶ Recognition, 2023, pp. 13 142–13 153.

- ¹²⁵⁷ [36] X. Yu, M. Xu, Y. Zhang, H. Liu, C. Ye, Y. Wu, Z. Yan, C. Zhu, ¹²⁵⁸ Z. Xiong, T. Liang et al., "Mvimgnet: A large-scale dataset of ¹²⁵⁹ multi-view images," in Proceedings of the IEEE/CVF conference ¹²⁶⁰ on computer vision and pattern recognition, 2023, pp. 9150–9161.
- ¹²⁶¹ [37] L. Qiu, G. Chen, X. Gu, Q. zuo, M. Xu, Y. Wu, W. Yuan, Z. Dong, ¹²⁶² L. Bo, and X. Han, "Richdreamer: A generalizable normal-depth diffusion model for detail richness in text-to-3d," arXiv preprint ¹²⁶⁴ arXiv:2311.16918, 2023.
- ¹²⁶⁵ [38] H. Wang, X. Du, J. Li, R. A. Yeh, and G. Shakhnarovich, ¹²⁶⁶ "Score jacobian chaining: Lifting pretrained 2d diffusion 1267 models for 3d generation," 2022. [Online]. Available: [https:](https://arxiv.org/abs/2212.00774)
//arxiv.org/abs/2212.00774 ¹²⁶⁸ [//arxiv.org/abs/2212.00774](https://arxiv.org/abs/2212.00774)
- ¹²⁶⁹ [39] J. Tang, J. Ren, H. Zhou, Z. Liu, and G. Zeng, "Dreamgaussian: ¹²⁷⁰ Generative gaussian splatting for efficient 3d content creation," ¹²⁷¹ arXiv preprint arXiv:2309.16653, 2023.
- ¹²⁷² [40] Z. Chen, F. Wang, Y. Wang, and H. Liu, "Text-to-3d using gaus-¹²⁷³ sian splatting," in Proceedings of the IEEE/CVF Conference on ¹²⁷⁴ Computer Vision and Pattern Recognition, 2024, pp. 21 401–21 412.
- ¹²⁷⁵ [41] T. Yi, J. Fang, J. Wang, G. Wu, L. Xie, X. Zhang, W. Liu, Q. Tian, and ¹²⁷⁶ X. Wang, "Gaussiandreamer: Fast generation from text to 3d gaus-¹²⁷⁷ sians by bridging 2d and 3d diffusion models," in Proceedings 1278 of the IEEE/CVF Conference on Computer Vision and Pattern ¹²⁷⁹ Recognition, 2024, pp. 6796–6807.
- ¹²⁸⁰ [42] A. Nichol, H. Jun, P. Dhariwal, P. Mishkin, and M. Chen, "Point-e: 1281 A system for generating 3d point clouds from complex prompts, ¹²⁸² 2022. [Online]. Available:<https://arxiv.org/abs/2212.08751>
- ¹²⁸³ [43] J. Li, H. Tan, K. Zhang, Z. Xu, F. Luan, Y. Xu, Y. Hong, ¹²⁸⁴ K. Sunkavalli, G. Shakhnarovich, and S. Bi, "Instant3d: Fast ¹²⁸⁵ text-to-3d with sparse-view generation and large reconstruction ¹²⁸⁶ model," 2023. [Online]. Available: [https://arxiv.org/abs/2311.](https://arxiv.org/abs/2311.06214) 1287 [06214](https://arxiv.org/abs/2311.06214)
- ¹²⁸⁸ [44] Y. Xu, Z. Shi, W. Yifan, H. Chen, C. Yang, S. Peng, Y. Shen, ¹²⁸⁹ and G. Wetzstein, "Grm: Large gaussian reconstruction model ¹²⁹⁰ for efficient 3d reconstruction and generation," 2024. [Online]. ¹²⁹¹ Available:<https://arxiv.org/abs/2403.14621>
- ¹²⁹² [45] H. Jun and A. Nichol, "Shap-e: Generating conditional 3d implicit ¹²⁹³ functions," 2023. [Online]. Available: [https://arxiv.org/abs/2305.](https://arxiv.org/abs/2305.02463) ¹²⁹⁴ [02463](https://arxiv.org/abs/2305.02463)
- ¹²⁹⁵ [46] F. Hong, J. Tang, Z. Cao, M. Shi, T. Wu, Z. Chen, T. Wang, L. Pan, D. Lin, and Z. Liu, "3dtopia: Large text-to-3d generation model ¹²⁹⁷ with hybrid diffusion priors," arXiv preprint arXiv:2403.02234, ¹²⁹⁸ 2024.
- ¹²⁹⁹ [47] Z. Tang, S. Gu, C. Wang, T. Zhang, J. Bao, D. Chen, and B. Guo, ¹³⁰⁰ "Volumediffusion: Flexible text-to-3d generation with efficient vol-¹³⁰¹ umetric encoder," arXiv preprint arXiv:2312.11459, 2023.
- ¹³⁰² [48] J. Lorraine, K. Xie, X. Zeng, C.-H. Lin, T. Takikawa, ¹³⁰³ N. Sharp, T.-Y. Lin, M.-Y. Liu, S. Fidler, and J. Lucas, "Att3d: ¹³⁰⁴ Amortized text-to-3d object synthesis," 2023. [Online]. Available: ¹³⁰⁵ <https://arxiv.org/abs/2306.07349>
- ¹³⁰⁶ [49] K. Xie, J. Lorraine, T. Cao, J. Gao, J. Lucas, A. Torralba, S. Fidler, ¹³⁰⁷ and X. Zeng, "Latte3d: Large-scale amortized text-to-enhanced3d ¹³⁰⁸ synthesis," arXiv preprint arXiv:2403.15385, 2024.
- ¹³⁰⁹ [50] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, ¹³¹⁰ T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly ¹³¹¹ et al., "An image is worth 16x16 words: Transformers for image ¹³¹² recognition at scale," arXiv preprint arXiv:2010.11929, 2020.
- ¹³¹³ [51] W. Peebles and S. Xie, "Scalable diffusion models with transform-¹³¹⁴ ers," in Proceedings of the IEEE/CVF International Conference on ¹³¹⁵ Computer Vision, 2023, pp. 4195–4205.
- ¹³¹⁶ [52] J. Lei Ba, J. R. Kiros, and G. E. Hinton, "Layer normalization," ¹³¹⁷ ArXiv e-prints, pp. arXiv–1607, 2016.
- ¹³¹⁸ [53] A. Vaswani, "Attention is all you need," Advances in Neural ¹³¹⁹ Information Processing Systems, 2017.
- ¹³²⁰ [54] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, ¹³²¹ "The unreasonable effectiveness of deep features as a perceptual ¹³²² metric," in Proceedings of the IEEE conference on computer vision 1323 and pattern recognition, 2018, pp. 586–595.
1324 [55] D. P. Kingma and M. Welling, "Auto-encod
- ¹³²⁴ [55] D. P. Kingma and M. Welling, "Auto-encoding variational bayes," ¹³²⁵ 2022.
- ¹³²⁶ [56] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agar-¹³²⁷ wal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., "Learning ¹³²⁸ transferable visual models from natural language supervision," in ¹³²⁹ International conference on machine learning. PMLR, 2021, pp. ¹³³⁰ 8748–8763.
- [57] M. Li, P. Zhou, J.-W. Liu, J. Keppo, M. Lin, S. Yan, and X. Xu, 1331 "Instant3d: Instant text-to-3d generation," International Journal of ¹³³² Computer Vision, pp. 1–17, 2024. 1333
- [58] M. Arjovsky and L. Bottou, "Towards principled methods 1334 for training generative adversarial networks," arXiv preprint ¹³³⁵ arXiv:1701.04862, 2017. ¹³³⁶
- [59] T. Karras, S. Laine, and T. Aila, "A style-based generator ar- ¹³³⁷ chitecture for generative adversarial networks," in Proceedings ¹³³⁸ of the IEEE/CVF conference on computer vision \overline{and} pattern 1339 recognition, 2019, pp. 4401–4410. 1340
- [60] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, ¹³⁴¹ and W. Chen, "Lora: Low-rank adaptation of large language ¹³⁴² models," arXiv preprint arXiv:2106.09685, 2021.
- [61] G. Parmar, T. Park, S. Narasimhan, and J.-Y. Zhu, "One-step ¹³⁴⁴ image translation with text-to-image models," arXiv preprint ¹³⁴⁵ arXiv:2403.12036, 2024. 1346
- [62] A. Sauer, F. Boesel, T. Dockhorn, A. Blattmann, P. Esser, and ¹³⁴⁷ R. Rombach, "Fast high-resolution image synthesis with latent ad- ¹³⁴⁸ versarial diffusion distillation," arXiv preprint arXiv:2403.12015, ¹³⁴⁹ $2024.$ 1350
- [63] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, 1351 S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial ¹³⁵² nets," Advances in neural information processing systems, vol. 27, 1353
2014. 2014. ¹³⁵⁴
- [64] N. Kumari, R. Zhang, E. Shechtman, and J.-Y. Zhu, "Ensem- ¹³⁵⁵ bling off-the-shelf models for gan training," in Proceedings 1356 of the IEEE/CVF conference on computer vision and pattern ¹³⁵⁷ recognition, 2022, pp. 10 651-10 662.
- [65] K. Zhang, N. Kolkin, S. Bi, F. Luan, Z. Xu, E. Shechtman, and 1359 N. Snavely, "Arf: Artistic radiance fields," in European Conference 1360 on Computer Vision. Springer, 2022, pp. 717–733.
- [66] T. Luo, C. Rockwell, H. Lee, and J. Johnson, "Scalable 3d cap- 1362 tioning with pretrained models," Advances in Neural Information 1363 Processing Systems, vol. 36, 2024.
- [67] J. Canny, "A computational approach to edge detection," IEEE 1365 Transactions on pattern analysis and machine intelligence, $\overline{no. 6}$, 1366 pp. 679–698, 1986. ¹³⁶⁷
- [68] Z. He and T. Wang, "Openlrm: Open-source large reconstruction 1368 models," [https://github.com/3DTopia/OpenLRM,](https://github.com/3DTopia/OpenLRM) 2023.
- [69] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Rey- ¹³⁷⁰ mann, T. B. McHugh, and V. Vanhoucke, "Google scanned objects: 1371 A high-quality dataset of 3d scanned household items," in 2022 1372
International Conference on Robotics and Automation (ICRA). 1373 International Conference on Robotics and Automation (ICRA). IEEE, 2022, pp. 2553–2560. 1374
- [70] J. Li, D. Li, S. Savarese, and S. Hoi, "Blip-2: Bootstrapping 1375 language-image pre-training with frozen image encoders and ¹³⁷⁶ large language models," in International conference on machine 1377 learning. PMLR, 2023, pp. 19730-19742.
- [71] J. Collins, S. Goel, K. Deng, A. Luthra, L. Xu, E. Gundogdu, ¹³⁷⁹ X. Zhang, T. F. Yago Vicente, T. Dideriksen, H. Arora, M. Guillau- ¹³⁸⁰ min, and J. Malik, "Abo: Dataset and benchmarks for real-world 1381 3d object understanding," CVPR, 2022.
- [72] M. Li, T. Yang, H. Kuang, \overline{J} . Wu, Z. Wang, X. Xiao, and C. Chen, 1383 "Controlnet++: Improving conditional controls with efficient con- ¹³⁸⁴ sistency feedback," arXiv preprint arXiv: 2404.07987, 2024.
- [73] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, 1386 "Towards robust monocular depth estimation: Mixing datasets ¹³⁸⁷ for zero-shot cross-dataset transfer," IEEE transactions on pattern 1388 analysis and machine intelligence, vol. 44, no. 3, pp. 1623–1637, 1389
2020. 2020. ¹³⁹⁰
- [74] S. F. Bhat, R. Birkl, D. Wofk, P. Wonka, and M. Muller, "Zoedepth: ¨ ¹³⁹¹ Zero-shot transfer by combining relative and metric depth," arXiv 1392 preprint arXiv:2302.12288, 2023. 1393
- [75] G. Bae, I. Budvytis, and R. Cipolla, "Estimating and exploiting the ¹³⁹⁴ aleatoric uncertainty in surface normal estimation," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 1396 2021, pp. 13 137–13 146. 1397
- [76] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre- 1398 iter, "Gans trained by a two time-scale update rule converge ¹³⁹⁹ Advances in neural information processing systems, vol. 30, 2017.